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ABSTRACT

A method for including the solution of the transfer equation in

a standard Henyey type hydrodynamic code has been developed. This

modified Henyey method has been used in an implicit hydrodynamic

code to compute deep envelope models of a classical Cepheid with a

period of 12d including radiative transfer effects in the optically

thin zones.

There are two secondary features on the light curve of the

model, a shoulder during rising light and a distinct bump during

falling light. It is shown that the shoulder during rising light is

caused by a deep envelope pressure wave and that the bump during

falling light may be due to an atmospheric oscillation. It is shown

that the atmospheric oscillation mechanism is consistent with the

Hertzsprung sequence and the period-luminosity relation.

The structure of each hydrodynamic model was used as a snapshot

of the temperature and pressure structure of the atmospheric layers.

After using line blocking factors to account for the effect of

spectral lines on the spectral energy distributions computed for the

models, broad band UBVRI colors were calculated. The light and color

curves of the models reproduce the observed amplitude and asymmetry

of Cepheids in this period range. In addition, the color-Teff



relations derived from the models were found to agree with those

derived independently. It was found that the colors of the

equilibrium model are best reproduced if the intensity mean of the

magnitudes, <B >I - < V >I9 is used to compute mean colors. It

was also found that loops in the (U-B)-(B-V) diagram are probably

due to the dependence of the continuous opacity on the electron

pressure.

Line profiles were then computed using the moving atmospheres

from the hydrodynamic models. It was found that the velocity

gradients in the atmosphere are not responsible for the large

microturbulent velocities observed in Cepheids but may be responsible

for the occurrence of supersonic microturbulence. The total observed

microturbulence was found to be consistent with the linear sum of

the classical microturbulence and that caused by the velocity gradients.

It was also found that the splitting of the cores of the strong lines

is due to shock induced temperature inversions in the line forming

region.

The adopted light, color, and velocity curves were used to

study three methods frequently used to determine the mean radii

of Cepheids. It was found that an accuracy of 10% is possible only

if high quality observations are used.
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NOTATION

The choice of notation always presents a problem. One would like

to have each symbol represent a single quantity. On the other hand,

one would also like to use standard notation wherever possible.

These two criteria are often incompatible. In the following standard

notation is used whenever possible. If a symbol has more than one

meaning, the context in which it is used is sufficient to remove any

ambiguity. The following is a partial list of the symbols used.

-15' -3 -4a radiation density constant = 7.565 x 10 erg cm deg

B L/L., or

Planck function

.B monochromatic Planck function

b' k/pm

10 -1
c speed of light = 2.998 x 10 cm S

E total energy

Eion+ex energy contained in ionization and excitation of atoms

Er radiation energy density

F flux in erg s-I cm
2  -

-1 -2 -1
Fv flux in erg s cm Hz

g gravitational acceleration

-8 2 -2
G gravitational constant = 6.668 x 10"8 dyn cm g

I specific intensity, or
identity matrix

L luminosity

m mass inside a shell of radius r

mH  mass of hydrogen atom

xiii



m . mass inside base of envelope
min

M mass of star, or
bolometric magnitude

M o  mass of star, M (1 +8 )where 6 10

N number of zones in model

P period of star, or
total pressure

Pa natural period of atmosphere

P natural period of envelope, or
electron pressure

P gas pressure

P radiation pressure
r

P total pressure at surface of model
0

q artificial viscosity pressure

Q pulsation constant = P PVp, or
Lagrangian mass coordinate

r radius

r radius at base of envelope

R In r, or
stellar radius

S natural log of Lagrangian mass coordinate

t time

T temperature, or
effective temperature

Teff effective temperature

v velocity

v center of mass velocity of'star

V specific volume = (density)-1

W In V

Z In T

K Rosseland mean opacity

xiv



Kc Continuous opacity

K monochromatic opacity

8 parameter defining implicit-explicit mixture, or
angle to line of sight

eff 5040/Teff

X line center wavelength

AND  Doppler width

pmean molecular weight, or
cosine of angle to line of sight

n natural log of total pressure

p mean stellar density

a Stefan-Boltzmann constant = 5.6692 x 10-5 erg cm 2 deg s-

7 Ross eland mean optical depth

monochromatic optical depth

I phase = fractional part of (t-to)/P

fl.fI vector or matrix norm

xv



CHAPTER I

INTRODUCTION

A. Historical review

In 1784, John Goodricke discovered the variability of 6 Cephei.

However not until 126 years after he published his findings was the

importance of Cepheids as distance indicators realized. Although it

was known that Cepheids differed from other variables in that their

velocity curves are mirror images of their light curves (Belopsky

1895), it was not until 1912 that Leavitt discovered the period-

luminosity relation (Pickering 1912). During Leavitt's study of

variable stars in the Small Magellanic Cloud, she noticed that the

brighter stars have longer periods. Since all stars in the Small

Magellanic Cloud are nearly the same distance from the earth, she

concluded that the correlation applied equally well to the absolute

magnitudes.

Unfortunately, the early attempts by Hertzsprung (1913) and

Shapley (1918) to find the zero point of the period-luminosity

relation neglected the effects of interstellar absorption and were

based on poor data. The resulting error of 1.5 almost exactly

compensated for the error introduced by using globular cluster

Cepheids to find the absolute magnitudes of RR Lyrae stars. When

the absolute magnitudes of RR Lyrae stars were found independently,

the results supported Shapley's zero point. It was not until 1952

when Baade was unable to find RR Lyrae stars in M31--stars that he

should have been able to see--that the error was discovered (Baade

1



1956). The importance of Cepheids as distance indicators was

demonstrated by!this correction which increased both the distance

and time scales of the universe by a factor of two.

The discovery of the period-luminosity relation increased the

theoreticians' interest in the nature of the Cepheid mechanism.

While it was originally thbught that Cepheids were binaries,

difficulties reconciling this hypothesis with observations suggested

that the light and velocity variations were due to radial oscillations.

Although Ritter had suggested radial pulsations in 1879, and Shapley

had introduced the idea into the astronomical literature in 1914, it

was not until 1918 that a thorough study of linear, adiabatic pulsa-

tions was published by Eddington. In this work, he derived the

period-mean density relation, P.1 p = Qs a constant, and showed that

the sign of the second order terms dropped from the linearized equations

indicated that these terms were responsible for the observed asymmetry

of the light curves. He was unable to determine the nature of the

driving mechanism but suggested that an increase of the energy genera-

tion at minimum radius would produce the desired effect. A more

troubling problem was the cause of the 90" phase lag. Linear, adiabatic

theory predicts that maximum light should be in phase with minimum

radius, not with maximum expansion velocity as observed. If the light

and velocity vary sinusoidally, this phase shift is 900.

Partly because of these difficulties, geometric theories to explain

the light and velocity variations were not abandoned. However, in 1926,

Baade proposed a test of the pulsation theory. If the star is pulsating,

the observations at two phases can be used in the relations



L1 R12 T (I-)
L2 R22 24

and 2
R2 - R1 = v dt (1-2)

1

Since he had no knowledge of the color-temperature relation

and the necessary velocity measurements had not been made, he was

unable to apply this method. The first successful radius determination

using this method was made by Becker in 1940, but the results were not

very accurate. Wesselink (1946) improved Baade's method by selecting

phases of equal color. If equal color was assumed to imply equal

temperature, no temperature calibration was needed in equation (I-I).

The radius determinations made using Baade's, and later, Wesselink's

methods firmly established the validity of the pulsation hypothesis.

The nature of the driving mechanism continued to be a problem.

Four possibilities had been suggested:

1. 6 mechanism: During contraction, the energy generation

increases. Since heat is added to the star when it is

hottest, thermal energy is converted into mechanical

energy (Eddington, 1918).

2. K mechanism: During contraction, the opacity in some region

increases. Since less heat is lost at maximum temperature,

the stability of the star is decreased (Zhevakin, 1953).

3. y mechanism: An ionization zone will remain cool during

compression since some energy will be used to ionize the gas.

The gas will absorb heat when hottest, destabilizing the

star (Cox, Cox, Olsen, King, Eilers, 1966).
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4. r mechanism: At minimum radius, the increased curvature

of the outer stellar layers traps radiation. Heat is

added at maximum temperature, and the stability of the

star is reduced (Baker, 1967).

The radius calculations of Becker (1940) indicated that the

relative radius variations in Cepheids were too small for the r

mechanism to be significant. In 1950, Epstein showed that the radius

variations in the stellar core were so small that the e mechanism

must be negligible. Linear, nonadiabatic calculations of Baker and

Kippenhahn (1962, 1965) and by Cox (1963) demonstrated the effective-

ness of both the K and y mechanisms in the HeII ionization region.

B. Recent work

There were other problems that could not be investigated with

the linear approximation. The'nonlinear calculations of Christy, J.

Cox, A. Cox, and King, among others (see King and Cox 1968, and

Christy 1969, 1970 for references) have been used to study these

problems. These models show that the present theories are adequate

to describe the gross features of the pulsation such as the approxi-

mate light and velocity amplitudes, the phase lag between radius and

temperature changes, and the shapes of the light and velocity curves.

Other questions remain unanswered. Stobie's (1969c) calculations

show that there is a line in the period-luminosity plane separating

stars pulsating in the first harmonic from those pulsating in the

fundamental. In general, stars with a period less the 7d should be

pulsating in the first harmonic; those with a period over 7 , in the

fundamental. On the other hand, Fernie (1968) has shown that the

scatter in the empirical period-radius relation is reduced if some



Cepheids are treated as overtone pulsators. The stars that Fernie

suggests are overtone pulsators are not confined to the period range

predicted by Stobie. The discrepancy may be due to errors in the

radius determinations inherent in the Wesselink method. These

errors will be investigated in Chapter VI.

The nature and cause'of the phase lag are also problems.

Castor (1968) has suggested that the phase lag is caused by the

hydrogen ionization region moving through mass as the star pulsates.

Using results of linear theory, he concludes that the heat capacity

of this region delays light maximum. He states that the rate at

which the ionization region sweeps through mass should be in phase

with the luminosity. Christy (1968) has studied this problem with

his nonlinear calculations and finds that the phase shift through the

hydrogen ionization region is only 30 *. The remainder of the shift

he attributes to skewing of the light curve by nonlinear effects.

King, Cox, Eilers, and Davey.(1973), on the other hand, find a 900

phase shift in their linear calculations and conclude that the phase

lag is a nonadiabatic effect and not a nonlinear effect. The phase

lag will be investigated further in Chapter III.

Probably the most worrisome problem is the Cepheid mass

discrepancy. Stellar evolution calculations show that the mass

of a star near the Cepheid instability strip has a mass given by

Mev Lk exp [2.3 (X + 3Z)]

(Iben and Tuggle, 1972a). Masses of pulsating stars, on the other

hand, can be found in one of two ways. The first uses the period-

mean density relation, P p = Q. Linear calculations can be used



to find Q (Epstein 1950; Cogan 1970; Cox, King, and Stellingwerf 1972),

and, if the radius can be found, the relationship yields the pulsation

mass, M . It should be noted that MQ is sensitive to errors in the

radius, since M - R3 . The second method uses the phase of the second

bump on the light curves of Cepheids with periods between 7
d and 15d

Christy (1968) has proposed that this bump is the result of a pressure

wave which travels into the star, is reflected from the core, and

appears at the surface as a second bump on the next pulsation cycle.

The time it takes the pressure wave to travel to the core and back

is a measure of the stellar radius, while the period of the star de-

pends on both the mass and radius. It is possible, therefore, to

find the mass from the phase of the bump, M. Unfortunately, MQ and

. are typically half of Mev

Iben and Tuggle (1972a) have shown that the descrepancy between

Mev and MQ can be removed by increasing the zero point of the period-

luminosity relation by O02 or adjusting the (B-V)-Teff relation

slightly. Fricke, Stobie, and Strittmatter (1971, 1972), however,

have shown that the discrepancy cannot be removed if M. is also

considered. Since van Genderen (1970) has suggested that more than

one mechanism produces bumps on Cepheid light curves, N may be un-

reliable. This point is examined further in Chapter III.

More complete reviews of the literature have been given by

Rosseland (1949), Ledoux and Walraven (1958), King and Cox (1968),

and Fernie (1969).

C. Hydrodynamic Cepheid atmospheres

One of the difficulties with the models discussed above is that

they do not adequately represent the Cepheid atmosphere. Since the
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atmosphere is the only part of the star actually observed, the coarse

zoning and use of the diffusion approximation in the optically thin

zones of the models makes the comparison of the theoretical and observa-

tional results difficult. Recently Keller and Mutschlecner (1970, 1971)

and Bendt and Davis (1971) have attempted to remove some of these

difficulties by including the effects of radiative transfer. Their

emphasis, however, is still on the envelope. In Chapters IV and V, an

attempt will be made to answer some of the following questions raised

by the observations:

1. How should light and color variations be averaged to best

represent the equilibrium state of the star? For example,

there is a systematic difference between

i (B-V)dt and -2.5 log 10j'-B/2.5 dt

0 1o10-V/ 2 .5 dt

2. Why are weak lines asymmetric near phases of maximum velocity

while strong lines are often asymmetric near phases of minimum

velocity? For example, Bell and Rodgers (1964) find that the

X45081 line of Fell is asymmetric in Dor near the phase of

maximum radius.

3. Why are the cores of the strongest lines sometimes split?

Grenfell and Wallerstein (1969) and Wallerstein (1972) observe

splitting in the core of H. that indicate velocity differences

P -1of up to 100 Om s . Does this observation indicate actual mass

motions or is there another explanation?



4. How well do the observed velocity curves represent the

mass motions of the star? Since the continuous opacity

scale changes during the pulsation cycle, the observed

velocities do not necessarily correspond to a given mass

element. The size of the discrepancy between the observed

and actual velocity curves is not known.

5. What is the physical nature of the variable microturbulence

observed in Cepheids and why is it occasionally supersonic?

These questions can best be answered by computing hydrodynamic

model atmospheres. In Chapter II, the method used to compute the

models is presented. Chapter III contains a discussion of the

properties of the hydrodynamic envelopes including an investigation

of the phase lag and second bump. In the next two chapters the

models are treated as stellar atmospheres; Chapter IV contains a

discussion of the continuous spectrum; Chapter V, a discussion of

the line spectrum. The results obtained from these calculations are

used in Chapter VI to examine several methods used to find Cepheid

radii. Chapter VII summarizes the results and contains suggestions

for further work.



CHAPTER II

METHOD OF COMPUTATION

A. Diffusion approximation models*

1. Differential and difference equations.

The hydrodynamic envelope of a Cepheid can be represented in a

Lagrangian coordinate system by the following differential equations:

4 r = V, (II-1)
3 am

by 2 a (P + q) = -Gm 1 (11-2)
+ 4 T r -2

BE = -bL - (P + q) _V (11-3)
at am at

L - -256U7 2  r 4 T 3 T (11-4)
3 K , m

5r
W- = v (11-5)

representing conservation of mass (II-1), momentum (11-2), and

energy (11-3), energy transport by radiation (11-4), and the

definition of velocity (11-5). The symbols used are defined in the

Notation section. Convection and thermonuclear energy generation

have been neglected, and the diffusion approximation for radiative

transfer has been used. The boundary conditions are

* Most of the material in this section is from working notes prepared
by G. S. Kutter and W. M. Sparks. Kutter and Sparks (1972) contains a
summary of these notes.

9
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base of envelope: v=O, L=LO, r=r0  (11-6)

4 3 4 2
surface: P=PO,T 3 Teff (+ (11-7)

where L0 and ro are constants, PO is the pressure on the surface, and

7 is the Rosseland mean optical depth. When the constitutive equations

defining P, q, E, and K as functions of T and V are included, the

differential equations represent a well-defined mathematical

problem.

This system of coupled, nonlinear, first-order, partial differen-

tial equations cannot be solved analytically. To solve the system of

equations numerically, the star is divided into N concentric mass

shells whose interfaces are indexed from 1 at the base of the envelope

to N+1 at the surface. These mass shells define a Lagrangian grid,

Qi = 1 - mi / MO,' where M0 
= M(1+6 ) and 6 is a small number (typically

10-12) used to avoid logarithmic singularities at the surface

(Kippenhahn, Weigert, and Hofmeister 1967). The time grid is defined

n+k n+1 n
by a set of time steps At = t - t . In order to decrease

the amount of interpolation to be done, the variables v, L, and r are

defined at the interfaces while V, T, P, q, E, and K are defined at

the midpoints.

The difference equations at time tn + l are

3 3
4rr r i  - r 1 ] = -V. (11-8)
3M Q -

0 1 -



n
v v n
vi = (1 -e)F + Fi

4"ri [(1 - 8) (ri )

oi 4 Tr

n+ . V n + V.
x q i + In ( Q - -

n n

V V

2
r P P Gm

F. = 4 i i+ - i-. i
where 1 M Q S - S r.2

0i i+ i-

in

i =In qi +- G.

Atn+- i-S + -

n+- W. -W
-q- V- i- " + (II

A t

where L B. - B.
i- 1 i-1

MQ S. - S.
o i- Si i-1

-Pi- Vi- i- i-
i-k - A t n+

A t

W. = In V.
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qn+k 0' if Wjk :t Wiand ( -r ) 2 . Wn  )2 f n

i- (ri - ri- i- i i- i-

Vi (Atn+k 2

qo is discussed below; 4 4
2 r. T.

2 56 G ~ i i i Zi-_ ; (II-11)

i = sLM " s

n  n
R. - R.. vi

(1 ) + (11-12)
At n +  r i n

All quantities without a time superscript represent values at time

n+l
t .

The parameter E allows the expression of the time derivatives

as a mixture of forward and backward differences. If 0 = 1, the

equations are implicit; if 0 = 0, the equations are explicit.

Using 0 > 0 relaxes the restriction put on the time step by the

Courant condition. = 1 was used to generate the stable model

since the time step could become arbitrarily large as the model

approached equilibrium. Using 0 < 0.5 in equations (11-8) to (11-12)

produces numerical instabilities as shown by Kutter and Sparks (1972).

The boundary conditions at the base of the envelope are

1  = 0, B1=LO/L, rl=r O  (11-13)

At the surface they are
2

r 2 (P - PN )  GM
F N+_ 4 Tr N+l 0  N+ - 0 (11-14)

Mo QI" Q+r 2N+ rN+
Mo N+1 N+ N+
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and
2 4

B = 16 Tr rN+1  T 4
N+1 N+3 N+L

x 2 'M KN+ (QN+1 - N+ (11-15)
2 (rN+ 1 . -

The constitutive equations are

P = b'T/V + Pr = gas + radiation pressure (11-16)

E = b'T + E + E = thermal.+ radiation (11-17)
2 r i+e

+ ionization + excitation energy

where b' and Ei e as well as K are tabulated as functions of T and

V and depend on the composition. In the diffusion approximation

1 4
the-radiation pressure Pr = aT , and the radiation energy

density Er =-aT

2. Solving the difference equations.

The first step in solving the difference equations is to

linearize by replacing the set Ivi, B., R., Wi+., Zi. with the

set v. +8 v., B. + B., R. +8R., W. +6 W" Z +8 Z .
.3. i. i W i+ i+ ' i+ i+

2 2
For example r. is replaced by r.(l+26 R)and P by

P. 1 + 1 W + 6Z
Pi+ [1 N  i+~ 'Wi+Z +

i+k i-k

The increments are now treated as the unknowns of the system. This

leads to a system of 5: algebraic equations in 5N + 5 unknowns

which combined with the 5 boundary conditions, 6 v 6 B =

6R1 =6WN+3;2 =6Z N3/2 = 0, is a well-defined system of equations.
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An initial guess to the model at time tn+ l is obtained by

extrapolating from the preceding model. In general, the difference

equations will not be satisfied by the extrapolated variables.

Henyey, Forbes, and Gould (1964) have described a method for solving

the linearized equations. The system of equations for interface 2

is set up using the determinant elements given in Appendix A, and a

Gauss-Jordan reduction is performed to reduce this block to a nearly

diagonal form. This procedure is continued until the block for inter-

face N+1 has been reduced. A schematic of the partially reduced

matrix is shown in figure II-1. Since only the inhomogeneous terms

and those elements denoted "X" in the figure need be saved, less

computer memory is required than with other methods.

After the matrix has been reduced to the form of Figure II-1,

a back solution is performed to find the set of increments to be

added to the first guess. After updating the variables, the above

procedure is repeated until either the increments or the inhomogeneous

terms are sufficiently small.

Although the convergence is nearly quadratic for these models,

it can be accelerated. If the convergence is monotonic, the

increments can be multiplied by a number A > 1; if the convergence

is oscillatory, A < 1 can be used. In these calculations A = 0.9

produced the most rapid convergence.

3. Opacity Averaging.

When interpolations are needed, geometric means are used, i.e.,

Ti = (Ti+ . Ti-). The opacity, though, requires special handling.

In the hydrogen ionization region (HIR) the opacity differs by
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several orders of magnitude between neighboring zones. If the

geometric mean is used to find the opacity at the interface between

these two zones, large variations are observed in the light curve every

time a zone moves through the HIR. According to Stobie (1969a) this

effect is caused by using too large an opacity at the interface,

resulting in the zone on the high opacity side of the HIR not radia-

ting as efficiently as it should. The excess energy retained by this

zone is released in a very short time when the zone cools and its

opacity drops. This zoning effect can amount to O02 on the light

curve.

To avoid this problem, the opacity at the interface is defined

by
b 1-b

K. = K K (11-18)
1 + 

where K+ is the larger opacity, K_ is the lower opacity, and

O < b < 1 is a free parameter. Tests were made to determine the

best value for b. With b 2 0.5, the light curve was very jagged.

With b < 0.2, the pulsation amplitude decreased. A value of b = 1
3

did not noticeably affect the pulsation amplitude and produced a

light curve with bumps due to the zoning of less than 0O05. This

value of b was used throughout.

4. Artificial viscosity pressure.

The artificial viscosity pressure is an arbitrary quantity used

to limit the discontinuity at shock fronts (Richtmeyer and Morton

1967). If no aritifical viscosity is included, shock fronts become

smaller than one zone, and the time steps taken by the model become

very short. The artificial viscosity pressure smooths the shock front

over several zones and thereby limits the discontinuity of the shock front.
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Kutter and Sparks (1972) have shown that the artificial viscosity

pressure does not contribute to the mechanical flux and, therefore,

does not affect the conservation of energy.

Stobie (1969a) used a constant value of 90 (see equation II-10)

throughout the envelope and has shown that the pulsation amplitude

of his models decreases as the value of q0 increases. Shocks only

appear in the outer zones, though, and no artificial viscosity is

needed deeper than the Hell ionization region. A variable q0 can be

used to account for this fact, i.e.,

(q)i- = qe exp (-P /PH) '

where qe is a free parameter of order unity, and PH was chosen as

the pressure in the HIR in the equilibrium model. Tests were run

to determine the best value of qe. With qe < 2, shocks were large

and the time step small; with q >8, the pulsation amplitude decreased.

A value q e=4 was used and resulted in reasonably large time steps

without affecting the pulsation amplitude. In fact, the pulsation

amplitude was nearly independent of qe for 2<qe<6. Changing PH

also had little effect on the pulsation as long as q0 was small in

the Hell ionization region.

The properties of the models computed using the methods

presented in this section will be discussed in Chapter III and

compared to the radiative transfer models discussed below.

B. Radiative transfei models.

1i, Assumptions.

The diffusion approximation (equation 11-4) represents the

radiation field very well if the gas is optically thick. In the
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atmosphere, however, the radiation field is not isotropic, and a

more exact solution to the transfer equation must be used. In

order to simplify the calculations, the following assumptions were

made:

1. The atmosphere of the model is plane parallel. Bbhm-

Vitense (1972) has shown that the effects of spherical

symmetry are important for yellow supergiants only if

MBOL

2. The gas is in local thermodynamic equilibrium (LTE).

This assumption is difficult to justify for a gas as

tenuous as that of a Cepheid atmosphere but the problem

would be intractable without it. The results obtained by

Bell and Rodgers (1967), Parsons (1971b), and Schmidt

(1971a, b) using LTE indicate that the non-LTE effects are

not large.

3. The radiation field can be characterized by one frequency

group whose opacity is the Rosseland mean. This gray approxi-

mation has been shown by Bendt and Davis (1971) to differ only

slightly from the multi-frequency group solution although it

may lead to an underestimate of the radiation pressure.

4. Terms of order v/c in the transfer equation can be ignored.

-l
Since velocities in Cepheids are typically less than 60 km s-1

these terms should be negligible.

5. Energy transport is by radiation only. Although Cepheids are

cool, the density in the envelopes is so low that convection

is inefficient. In any case, an adequate theory of time-

dependent convection is not available.
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With these assumptions, the transfer equation can be written

as

dI = I - T n (11-19)
dT

where s = cos 0,

and dT Kdm.

The physical parameters needed to solve the hydrodynamic equations

(II-1) to (11-5) are the radiation energy density, E , the luminosity,
r

L, and the radiation pressure, Pr, which are given by

1
E = 4 Id p , (II-20)r c

L =  16 2r2 I d , (11-21)

P= I P2 d p. (11-22)

2. Method of solution.

Due to the anisotropy of the radiation field, the transfer

equation cannot be directly included in the.hydrodynamic equations

without introducing a great deal of complexity. It is possible to

avoid this complexity by noting that the Henyey method is a special

case of Newton's method for solving systems of nonlinear equations.

Newton's method can be expressed as

x(k) = x(k-l) J1-lf(x), (11-23)

where x is the vector of unknowns (note that x (k ) - x (k - ) is

the set of increments discussed in Section II-A), f(x) is the

vector of inhomogeneous terms of the linearized equations, and J

is the Jacobian of f with respect to x, i.e., J.. = 3fi/x , and the

superscript k counts the number of iterations. The system of equations
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is considered solved when lf(x)ll< 6, where C is the convergence

criterion.

If the Jacobian is exact, Newton's method converges quad-

ratically (Ortega 1972); if J is only approximate, Newton's method

may still converge but the rate of convergence will be slower than

quadratic. This fact suggests a method for including the transfer

equation in a Henyey type code. If the code is currently using

x (k ) = x(k-l) - J D(x), where D signifies that the diffusion
D-D-

approximation was used to compute the quantity, try x(k) = x(k-)

-l
J-1f(x), where R denotes that the transfer equation was used. The
D -R

convergence properties of this method are discussed below.

3. Convergence of the modified Henyey method.

Theorem: Given

1. x(k+l) = (k) _ jfR(a(k)), k=0,1,2, . . . (II-24)

2. R r JR - JD where JR is the Jacobian of fR with respect to-x,

3. f=( ) 0.-o.

Show that for all e > 0, their exists a 8 > 0 and an N > 0

such that for II R II < 5, Ijx(k) - x(c )1< 6 for k> N. In other

words show that x(k) -* x ( ) as k- c.

Proof:

Equation (11-24) can be expressed as a Picard iteration, i.e.,

S(k+) ((k)), (11-25)

where g(x)= x - JD1fR(x). By Ostrowski's theorem (Ortega 1972)

the series (11-25) coi;erges to x(-) if p (J ) < 1 when J is evaluated

at x) and if Ilx (O) -x() II is sufficiently small. Here Jg is the

Jacobian of g(x) and p (J ) is the spectral radius (i.e., the largest

eigenvalue) of J g. The j component of g is

g = x. -
3i k Dj-kJ )k k
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Then . fk

g) = 6 -C(J 1  f Dik(J k(g )jm = Xm jm k D jk xm k xm jk k

But f(x()) = O, so at x ( )

g.J-1

ax () 6 jm k (JD )jk(JR)km.xm --

Therefore J = I - JDR = + R) JD R,

-1 -
and p (J ) p (JD R) JD R  JD1  R .

Choosing 6 = II J 1  -1 implies that p (J ) (1 R I/ < 1 if and

only if IfR11 I JDflI < 1.

The iteration, therefore, converges if IIRIi < IJD1 " 1 .

Q. E. D.

This method is analogous to using the secant method as an approxi-

mation to the Newton-Raphson iteration in the one dimensional case.

Ortega (1972) has shown that the rate of convergence depends on the

value of P(J ). If p(J ) = 0, the convergence is quadratic. If

p (J ) > 0, as it is when R is non-zero, the convergence will be

slower than quadratic. Since the matrix R is not known, it is not

possible to verify a priori whether the iteration will converge to

the desired solution. Ortega (1972) has shown that, if the procedure

converges for I -x ( 0 ) - x ( ) II sufficiently small, it has converged

to the correct solution. Unfortunately, it is impossible to define

how small is sufficiently small. The radius of convergence can be

found only by trial and error. In this code, the first guess is kept

within the radius of convergence by limiting. the time step.

4. Tests of the modified Henyey method.

As a check on this method, a model computed using gray, plane-

parallel radiative transfer was allowed to evolve to hydrostatic equilibrium.
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In the optically thick zones, the difference between the temperatures

in the diffusion approximation and radiative transfer models was about

0.02%. In the optically thin zones, the model had a T(T) that agreed

with the exact solution of the gray transfer problem to better than

0.5%. A shock wave was then sent through the atmosphere. In the

optically thin zones, a temperature inversion was observed at the

shock front. No such temperature inversion was observed when the

diffusion approximation was used.

Using JD without modification produced very slow convergence.

In the diffusion approximation the radiation field at a given point

depends only on the local state of the gas. When using the trans-

fer dquation, however, the local radiation field depends on the state

of the gas throughout the model. In a very optically thin zone, the

radiation field is nearly independent of the local state of the gas.

To account for this fact,- JD was modified by multiplying such terms

as 8B/T by (1 - eT ). When these modifications were made to JD'

the rate of convergence improved without affecting the final results.

The coefficients of the increments used for these models are given

in Appendix B.

Using this method with gray, plane parallel radiative transfer

takes about 30 minutes on the IBM 360/91 to compute one period of a

Cepheid with a period of 12 days. About 25% of this time is used

to solve the transfer equation. It would, therefore, take 8 additional

minutes per frequency point for the non-gray problem, roughly a factor

of four faster than the method of Keller and Mutschlecner (1970) and

comparable in speed to the variable Eddington approximation used by

Bendt and Davis (1971).
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This method can be easily modified to include such effects

as spherical symmetry or non-gray radiative transfer by replacing

the transfer subroutine used here. In fact, the method has wider

applicability. For example, a Henyey type evolution code could be

modified to include deviations from hydrostatic equilibrium or

convective overshoot.

This modified Henyey method has been used to compute deep

envelope models of a 12d classical Cepheid. The following chapters

contain a discussion of the properties of these models.
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Figure II-i. Schematic of the partially reduced matrix of the
coefficients. The x's denote non-zero matrix elements.
All elements not shown are zero.



CHAPTER III

ENVELOPE OF THE MODEL

A. Equilibrium model.

1. Selection of the model.

There are two important criteria used to select a model for a

study such as this. First, the model should represent a well-

observed star to allow a comparison of theory with observation.

Since there are bright Cepheids of many periods, this criterion does

not greatly restrict the selection of model parameters. Second, the

model should not present unnecessary computational problems. Stobie

(1969c) has shown that short period Cepheids are more likely to be

pulsating in a harmonic than in the fundamental mode and some may be

pulsating in two modes simultaneously. Long period Cepheids also

present problems. These stars are cool enough that convection is

expected to be important. In addition, there is evidence of strong

shocks in their atmospheres (Rodgers and Bell 1968; Dawe 1969).

These two criteria indicate that the model should be chosen

d d
to have a period between 8 and 15 . One further criterion is the

availability of other theoretical results. Both Keller and

Mutschlecner (1970, 1971) and Bendt and Davis (1971) computed models

with periods of about 12d . For these reasons a model with a period

of -12d was selected having Teff=57000K, L=500OOO, and M=5M(Stobie

1969c).

24
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2. The First Guess

Once the model has been selected, the first guess to the model

at t=O must be generated. Although experience has shown that the

radius of convergence of the Henyey method is large, a reasonably

accurate first guess to the initial model is needed. Simply taking

a published envelope model will not suffice since difference in

zoning, opacity, and mean molecular weight will cause problems.

Either the iteration for the first time step will not converge or

the model will develop such strong shocks that it will eject a large

fracticnof its mass. To avoid these problems the static envelope code

used by Rose and Smith (1970, 1972) was modified to include the King

IVa tables for opacity and mean molecular weight (King 1972). Table

III-1 contains the number fractions of the elements included in cal-

culating these tables.

After a static envelope having the desired mass, luminosity, and

effective temperature was generated, the zoning criteria were selected.

The total mass of the envelope was chosen so that the base of the en-

velope had T=10 6 OK since Stobie (1969a) has shown that including

deeper zones does not appreciably affect the pulsation properties of

the model. In order to have enough optically thin zones to study the

atmosphere, a mass for the first zone of 1.5 x 1026 gm was selected.

It is also necessary to have enough zones in the model to perform the

numerical integration over depth with sufficient accuracy. The

results of Stobie (1964a) and Bendt and Davis (1971) indicate that at

least 50 zones are required. In order to minimize any problems associ-

ated with the zoning, 100 zones were used. This combination of 100

zones, mass of the surface zone of 1.5 x 1026 gm, and mass of the
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envelope of 0.5 M. resulted in a ratio of the mass of neighboring

zones of 1.15. Once these parameters were selected, it was possible

to interpolate in the static envelope model to obtain a first guess

to the model at t=O.

3. Relaxation to equilibrium.

The first guess to the model at t=O was used as input to the

hydrodynamic code. Since the static envelope code included

convection and the hydrodynamic code did not, the model was not

quite in hydrostatic or thermal equilibrium. In order to decrease

the computer time required for the model to evolve to equilibrium,

the pulsation was artificially damped by converting some of the kinetic

energy into thermal energy at each time step. With this damping the

model reached equilibrium in about 4000 time steps.

The equilibrium model was found to have a slightly different

effective temperature than the static envelope model. Some adjustment

was, therefore, necessary. The two free parameters that determine the

position of the model in the H-R diagram are the luminosity incident on

the lower boundary, LO, and the radius of the lower boundary, ro. In

equilibrium the luminosity leaving the surface must be equal to LO.

Thus, if L0 is the luminosity selected for the static model, the

effective temperature of the model can be changed by varying rO. If

rO is decreased, the model becomes more compressed, and Teff increases;

if r0 is increased, Teff decreases. After changing rO the model must

be forced to return to equilibrium. This procedure of changing ro

and forcing the model to return to equilibrium was continued until the

model had the desired effective temperature.
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The final equilibrium model, STB, has L=5000 LO, M=5M, Teff =

5730K, and R,=71.7 R . STB has 25 optically thin zones ranging from

-4T = 4.6 x 10 to T = 3. Due to the large opacity in the hydrogen ioniza-

tion region, the first optically thick zone is at T = 580. It is

possible, therefore, to refer to the optically thin zones as the atmo-

sphere without ambiguity. Since the atmosphere of STB has a thickness

of only 1% of the radius of the model, the plane parallel assumption

used in the radiative transfer calculations is justified.

Table III-2 contains the parameters of the final equilibrium

envelope, and figures III-1 to III-3 show the logarithm of the tem-

perature, pressure, and density, respectively, versus the logarithm of

Lagrangian mass coordinate. Note the large temperature increase and

the density inversion in the hydrogen ionization region. Both of

these effects would be smaller, but not eliminated, if convection

were included in the model (Latour 1970; Eoll 1973). However, the time

it takes a convective element to travel one mixing length is comparable

to the period of the Cepheid. Convection cannot be included correctly

in the hydrodynamic models until a theory of time dependent convection

is developed.

B. Full amplitude model.

1. Growth to full amplitude.

Once a static envelope with the desired luminosity and effective

temperature has been generated, the pulsation can be initiated in one

of two ways, by soft self-excitation or by hard self-excitation

(Ledoux and Walraven 1958). The former approach allows the pulsation

to grow from the computer round-off "noise" (Cox and Giuli 1968,
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pg 1125). The soft self-excitation requires no prior knowledge of

the pulsation mode or the full amplitude velocity distribution, but

the model must be followed for 5 to 10 e-folding times. The

second approach has been used by Christy (1968) and Stobie (1969a) and

consists of imposing a finite amplitude velocity distribution on the

static model. The initial velocity field is usually chosen so that

the initial kinetic energy amplitude is about 25% of its full amplitude

value. If the imposed velocity distribution does not correspond to

nearly a pure mode, transients will have a large amplitude and will

take several e-folding times to die out. This method assumes a sub-

stantial amount of information about the full amplitude pulsation, but

it allows full amplitude to be reached in only 2 or 3 e-folding times.

Since Stobie (1969a) gives the initial velocity distribution for a wide

variety of Cepheid models, and because e-folding times of Cepheids are

of the order of 100 periods, the hard self-excitation approach was

used.

Since the radiative transfer models take about five times more

computing time per period than the diffusion approximation models,

the diffusion approximation was used in generating the full amplitude

model. The initial velocity distribution was given by

v = -v0 (r / r p) 6

where r = radius at 7 = i,

-1
and vO = 10 km s .

The maximum of the total kinetic energy in the envelope during a period,

KEmax, provides the most reliable measure of the growth of the pulsation.

After initiating the pulsation it was found that KE decreased for
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too periods as the high order harmonics introduced by the initial

velocity distribution died out. After about 8 periods these transients

had a much lower amplitude than the fundamental mode.

In order to speed the growth to full amplitude, an artificial

amplification was used (Stobie 1969a). Choosing a phase when all

zones were moving outward with nearly their maximum velocity, the

velocity in each zone was multiplied by 1.5, doubling the kinetic

energy. Although this procedure introduced some transients, they

quickly died out. At period 26 the method of opacity averaging at

the HIR was changed to the method described in Chapter II. This

change greatly reduced the zoning effects resulting in fewer shocks

and, therefore, less damping due to the artificial viscosity. The

rate of increase of KE then increased. The model was then allowed
max

to pulsate for another 120 periqds, about 3 e-folding times (Stobie

1969c). At this point KEmax was increasing by only 0.02% per period.

Period 150 was chosen as the full amplitude, diffusion approximation

model, IHC (for implicit hydrodynamic code). Figure 111-4 shows the

approach of KEmax to full amplitude.

IHC was used as the starting model for the radiative transfer

calculation. As can be seen in figure 111-4, KE decreased smoothly
max

(indicating few transients) and approached a value about 10% lower

than KE in IHC. After 30 more periods KE was decreasing by less
max max

than 0.1% per period. Period 180 was chosen as the full amplitude

radiative transfer model, RDT. The smaller amplitude of RDT relative

to IHC is due to changes in the structure of, and, therefore, the

work done by, zones passing through the HIR. The ratio of fPdV in

RDT to fPdV in IHC for those zones passing through the HIR is 0.85
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accounting for the lower amplitude of RDT.

2. Properties of the full amplitude models.

The period of RDT is 12.05, which combined with the mass and

radius of STB gives Q = P p/po = 0.046. Christy (1968) has shown

that Q=0.022(R /RO) (MO / M) . Using the radius and mass of STB

gives Q = 0.043 in good agreement with RDT.

A comparison between the full amplitude RDT and IHC models

shows that, aside from differences due to the lower amplitude of

RDT, the two models produce nearly identical light and velocity

curves confirming the results of Bendt and Davis (1971) and Davis

(1971). The major difference between the models is that IHC never

has temperature inversions in the atmosphere while RDT does whenever

there are sufficiently strong shocks present.

It is not difficult to understand this difference between the

models. Consider a stellar atmosphere in radiative equilibrium.

In the diffusion approximation

L - dB = Bi+1 B i

dT 7i+l 7i

If the temperature in zone i+l is increased, the luminosity will

increase by an amount

-Bi+
AL

i+l -

If T i+l- is small, as it is in the atmosphere, AL will be large.

The excess thermal ene;gy in zone i+l will be radiated away and the

atmosphere will rapidly return to equilibrium. On the other hand,

the luminosity given by the transfer equation is

L - B(t)E2 (t-~)dt - -oB(t)E2(Ti-t)dt,
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where E2 is the second exponential integral. Perturbing the temperature

in zone i+l results in

ALil E2(t-Ti)dt.

i7

If T7i+ - 7i is small,

AL - AB (7i+l ) .

In the atmosphere, then, AL will be small and the return to equilibrium

will be slow. This behavior of the radiative transfer solution has

been discussed by Whitney (1967).

Since the temperature inversions in RDT occur only above T=0.01,

they will be important only for spectral lines and will have only a

small effect on the continuum. In fact, the continuum forming regions

of the atmosphere are nearly in radiative equilibrium at nearly all

phases as predicted by Whitney (1967). In the following discussion all

values will be taken from RDT, but the conclusions reached apply

equally well to IHC.

The relative radius change

AR RMA - RMIN 0.11
R RMEAN

is in good agreement with observed values (Nikolov and Tsvetkov

-1
1972), as is the velocity amplitude v -v . = 45 km sec (Stibbs

max min

1955). Figure III-5 shows the bolometric light curve. The small

ripples on the light curve are due to the zoning effects discussed in

the preceding chapter and are small enough not to confuse the inter-

pretation of the main features. The asymmetry of the light curve

falls within the observed range (Nikolov 1968). In contrast, the
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models of Keller and Mutchlecner (1970, 1971) and Bendt and Davis

(1971) are too asymmetric in the sense that the rising branches of

their light curves are too steep. Since they use a shallow envelope

driven from below by a coarsely zoned deep envelope model, and RDT

was computed using fine zoning throughout, this difference is

probably due to zoning.

Aside from the overall variation of the light curve and the

zoning effects, there are three features of interest, a sudden

decrease in light output at phase = 0.15, a shoulder on the rising

branch near i = 0.2, and a bump on the falling branch near i = 0.6.

All three features show zoning effects superimposed on them and,

therefore, are probably not due to the zoning. The shoulder on the

rising branch and the bump on the falling branch will be discussed

in the next section but it should be noted that Cepheids with periods

near 10d often show similar features (van Genderen 1970).

The dip at i = 0.15 is disturbing since it is not observed

(Nikolov 1968). Bendt and Davis (1971) also see a similar feature

on their light curves as do King, Cox, Eilers, and Davey (1973) in

their coarsely zoned diffusion approximation model of an 11.5 Cepheid.

Since this feature is usually dismissed as a zoning effect, an

attempt was made to find its cause. A detailed search of the computer

output revealed nothing related to the zoning that could cause the dip.

Hillendahl (1968) attributes the feature to the artificial viscosity.

There is a pressure wave moving outward that produces the shoulder

at 9 = 0.2. The artificial viscosity causes the pressure to rise

ahead of the temperature. The pressure rise causes the density to in-

crease which, in turn, raises the opacity. When this region of in-
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creased opacity reaches 7-1, the amount of light emitted decreases.

An opacity increase of 3% is sufficient to produce the dip observed

on the theoretical light curve. The same mechanism will produce

a dip preceding the bump at T = 0.6. The bump on the falling branch

would look more like a shoulder if the artificial viscosity could be

removed.

Figure 111-6 shows the velocity corresponding to 7 = 0.2. The

shoulder on the rising branch cannot be seen, but the bump on the

falling branch is quite pronounced. Since the velocity curves are

usually used to classify the bumps in the models, this model would be

described as having a single bump on the falling branch. According

tD the Hertzsprung sequence a Cepheid with a period of 12
d should have

a bump on the rising branch. If the velocity curve was used to

classify this model, it would be concluded that the model had the

wrong mass. This problem of classifying bumps on the light curves

can contribute to the Cepheid mass discrepancy (see Chapter I).

Figure 111-7 shows the velocity curves for 7 = 10-3, 10-1 , 1

and for a mass zone having 7 = 0.2 in STB. The feature on the

rising branch appears only for the most optically thin zones and

may be responsible for the peculiarities in the cores of the Ca II

H and K lines observed at this phase (Kraft 1967). The progressive

nature of the wave travelling through the atmosphere is readily

apparent. Substantial velocity gradients are present in the atmo-

sphere from m = 0.3 toI = 0.7. The velocity curve following a given

mass element is the same as that for T ! 1 except in the vicinity of

the second bump even though T 1 moves through more than 10 mass

zones. This point will be considered further in Chapter VI.
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3. Phase lag.

The phase lag between the light and velocity curves, A ?,

depends on which velocity curve is used. The phase shift ranges

from A § = 0.06 for T = 1 to A = 0 for 7 = 10-3 . Linear,

adiabatic theory predicts that light maximum should occur at minimum

radius, not near equilibrium radius as observed. Explanations for

the phase lag range from Eddington's suggestion in 1917 that the

phase lag is a natural consequence of the processes limiting the

amplitude of the star to Christy's in 1968 which attributes the phase

lag to a skewing of the light curve due to non-linear effects. Since

the linear calculations of King, Cox, Eilers, and Davey (1973) show

the phase lag, it is probable that the lag is the result of non-

adiabatic, not non-linear effects.

Castor (1968) treating the HIR as a discontinuity, has sug-

gested that a theory proposed by Eddington (1926) is correct.

The large heat capacity of the HIR delays light maximum. Since

the HIR lies at the top of the transition region between the quasi-

adiabatic envelope and the non-adiabatic atmosphere, the luminosity

gets "frozen-in" at the top of the HIR.

The phase lag can be seen in Figure 111-8 which is a 3-D plot

showing the variation of luminosity, L/LSTB, as a function of mass

point and phase as viewed from the center of the star. Note that

phase increases from right to left. The inset is a schematic repre-

sentation and will be used to define points of reference in the figure.

Point A is in the He II ionization zone. This part of the model is

nearly adiabatic, and, as expected, the luminosity maximum coincides

with radius minimum. By the time the He I ionization zone is reached

at point B, there is a substantial phase shift. A further, small phase
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shift is introduced in the HIR, the region between B and C. The

"freezing-in" of the flux in the atmosphere, point C, is seen as

luminosity perturbations moving outward at constant phase.

Plate I is a different representation of the same data and shows

two periods of the motion. The abscissa is the time coordinate, the

ordinate is the Lagrangian radial coordinate. Large values of L/LSTB

appear as bright areas while small values appear dark. The base of

the envelope is at the top of the figure. The bright area nearest

the top of the figure corresponds to point A in figure 111-8. As can

be seen the phase of light maximum increases continuously until the

atmosphere is reached. At this point the flux becomes "frozen-in" and

the maximum moves outward at constant phase. The model, therefore,

suggests that the HIR plays only a small role in generating the phase

shift. The phase shift appears to vary continuously through the

transition region between the quasiadiabatic envelope and the non-

adiabatic atmosphere.

Plate I shows another interesting phenomenon. In the He II ioniza-

tion region light minimum follows light maximum by about half the period.

In the He I ionization zone this phase difference is still nearly half

the period. Only in the atmosphere is the light curve very asymmetric.

The asymmetry of the light curve is, therefore, either an atmospheric

phenomenon or due to the HIR. This effect will be discussed in the

next section.

C.- Cause of the second bumps.

i. Christy mechanism.

In 1926, Hertzsprung classified Cepheids by the shape of their

light curves. (Payne-Gaposhkin 1951). Short period Cepheids have very
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asymmetric, smooth light curves. As the period increases the curves

become more symmetric and a second bump appears on the falling branch

in Cepheids with a period near 7d . This bump moves closer to the

primary maximum until at 10d the bump appears to coincide with maximum

light. Near a period of 12d the light curves often show two shoulders,

one on the rising and one on the falling branch. Cepheids with longer

periods show a single bump on the rising branch. Near a 15d period

the curves again become smooth and asymmetric. Figure 111-9 taken

from Payne-Gaposhkin (1951) illustrates this sequence.

Christy (1970) using the results of his nonlinear calculations

explains the second bump in the following manner. Near the phase of

maximum compression the He II ionization zone is rapidly heating

causing the zone to expand. This expansion sends a pressure wave out-

ward w1hich appears at light maximum. The expansion also sends a pres-

sure wave inward which is reflected by the core and appears at the

surface during the next cycle as a second bump. He then finds that

the time delay, D (in days), can be used to find the radius of the

model from R / Ro = 4.05D. Since the period of the star depends on

both its mass and radius, Christy can find both the mass and radius

of a star from its period and the phase of its bump. In general,

masses found in this way are about half those predicted by stellar

evolution theory.

It should be noted, however, that the Hertzsprung sequence is an

average property of Ceheids. Van Genderen (1970) has shown that the

phase of the second bump of individual Cepheids having the same period

varies over a wide range. He also shows that, while the Hertzsprung

sequence holds on the average up to a period of 10d, there is almost
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no correlation between bump phase and period from 10d to 30d

Beyond 30d the bump appears near minimum light. In those Cepheids

having two bumps on their light curves, he suggests that two inde-

pendent phenomena are operating.

2. Hillendahl's mechanism.

The mechanism proposed by Christy explains part of the Hertz-

sprung sequence. It does not, however, explain the double bump

Cepheids. Another mechanism is needed. Figure III-10 shows the

velocity as a function of mass point and phase. The inset will be

used to define points of interest in the figure. Effects due to the

zoning have been labelled "z" and are quite small compared to the

main features. The shaded area in the inset shows the bottom side

of the surface while the dashed line follows the HIR. The point

corresponding to maximum light is labelled "A"; B is the shoulder on

the rising branch of the light curve, and C is the bump on the falling

branch. The line marked D is an inward moving pressure wave discussed

below, and line E indicates the location of the inward moving pressure

wave described by Christy (1970).

Figure III-11 is a different view of the same data. After reaching

maximum expansion velocity near D the atmosphere begins to slow down

under the influence of gravity along line E. However, a disturbance

originating at point A changes the sign of the acceleration and propo-

gates both outward toward B and inward toward C. The velocity reaches

a second maximum near F and then decreases under the influence of

gravity along G. The curve marked H indicates the velocity curve

deeper in the envelope. Figure 111-12 shows the origin of the inward

and outward moving pressure waves. The line marked A is the locus of
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points of maximum velocity in the atmosphere; line B marks the locus

of points of maximum velocity in the envelope. As is evident, the

atmosphere reaches maximum velocity before the envelope and starts

to slow down while the envelope is still accelerating compressing a

region near the HIR. This compression generates pressure waves moving

both outward (line AB on figure III-11) and inward (line AC on figure

III-11). Line D(E) shows the inward (outward) moving pressure dis-

turbance described by Christy (1970).

Figure 111-13 clearly shows that the Christy pressure wave from

the preceding cycle (line C) arrives at the surface of the.model near

light maximum (A), not near the second bump (B). In fact, this

pressure wave reaches T = 1 very near 4 = 0.2 and is responsible for

the shoulder on the rising branch of the light curve.

Figure III-14 illustrates one possible explanation for the second

bump proposed by Hillendahl (1969, 1970). The points A, B, and C

correspond to the three local maxima on the light curve at phases m = 0.2,

0.35, 0.6, respectively. The Christy pressure wave reaches the top of

the envelope at point D and is responsible for the feature at B.

According to Hillendahl, the local velocity minimum at E is the result

of a rarefaction wave moving inward. The feature at C can then be

attributed to a secondary, "blow-off" shock. The inward moving

pressure disturbance (line C in figure 111-12) is then a second rare-

faction wave. In Hillendahl's interpretation, the features labelled

z in figure III-10 are further blow-off shocks. This effect can also

be seen in plate II. Here large positive velocities appear bright,

zero velocity gray, and large negative velocities dark. Two periods

are shown, i.e., phase increases from 0 to 2 from left to right, and
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the base of the envelope is at the top of the figure. The local

velocity minimum preceding the second bump (line AB in figure III-11)

can be followed backward in time into the envelope. Hillendahl

considers this minimum to be a result of the rarefaction wave follow-

ing the deep envelope pressure disturbance (line C in figure 111-13).

The inward moving pressure wave (line AC in figure III-11) he associates

with a second rarefaction.

There are several problems with this interpretation. Hillendahl

predicts as many as 5 blow-off shocks per period. All features on

the light and velocity curves following the bump on the falling branch

can be associated with zones moving through the HIR. While these

zoning effects may be masking the secondary blow-off shocks, it is

unlikely that the shocks would not be seen at all. Another difficulty

is the inward moving pressure wave (AC in figure III-11). If this

feature is to be associated with rarefaction following the secondary

shock causing the bump, it should follow the local velocity maximum.

It does not. It appears to originate before the second velocity maxi-

mum. The Christy mechanism cannot explain this feature either. Hillen-

dahl's mechanism also predicts that all Cepheids should have a second

bump on the falling branch since the primary expansion should always

cause a secondary, blow-off shock.

3. Atmospheric oscillation mechanism.

Since neither Christy's nor Hillendahl's mechanisms adequately ex-

plain the Hertzsprung sequence a third mechanism was sought. Inspection

of figure III-11 shows that the surface layers appear to be pulsating

nearly sinusoidally from point J to point B with a period roughly 2/3
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the period of the envelope. Figure 111-15 shows the power spectra

of two zones obtained from Fourier transforms of their velocity

curves. The dashed line refers to a zone at the top of the envelope.

No secondary periodicities are apparent with less than 3 times the

frequency associated with the envelope period, V . The amplitude of

the feature near V = 4v0 is so low that it may be due to noise genera-

ted in the transform process or to the inward moving pressure wave.

The solid line, referring to an atmospheric zone, indicates a secondary

periodicity near 2V0 with about 1/3 the amplitude of the main pulsation.

The higher frequency features are probably the result of zoning effects

or noise generated in the transform process.

The secondary periodicity can be understood in the following

analysis which was used by Christy (1962) in an early attempt to

predict the properties of Cepheid atmospheres. According to Lamb

(1932) the critical period of an isothermal atmosphere is given by

Pa = nR v/(yg), (III-1)

where I

y 5/3 for a neutral gas,

GM go M M

R (R/R)

Substituting values taken from STB shows that
2

P = 0.0025 (M/M.) (111-2)
a (M/M)

which gives P = 2.5 for STB. This period is too small to account

for the secondary periodicity seen in the atmosphere of the model.
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Gough, Ostriker, and Stobie (1965), on the other hand, have

shown that a better approximation to the Cepheid atmosphere is an

atmosphere with a constant temperature lapse rate. Choosing values

from STB results in

P = 0007 (R O) , (III-3)
a (M / MO)

or P = 7d which is about 0.6 times the period of RDT. It appears
a

that the bump on the light curve of RDT occurs because the atmospheric

period, Pa, is comparable to, but less than, the envelope period, Pe"

The occurrence of two bumps on Cepheid light curves can be ex-

plained qualitatively as follows: Cepheids with periods less than 7d

have P < 0.5 P . Since the atmosphere is being driven far froma e

resonance, the amplitude of the atmospheric mode is low, and the

atmosphere follows the motion of the envelope. Starting at 7d, the

driving frequency approaches the resonant frequency of the atmosphere,

but not until about 10d is the amplitude of the atmospheric mode large

enough to produce an observable shock from the compression of the HIR.

The multiple bumps seen on the rising branch of ultra-violet light

curves of B Doradus by Hutchinson (1974) may indicate that the atmo-

sphere is beginning to produce these shocks. In the period range 7d

to 10d the bumps appearing on the falling branch are produced by the

Christy mechanism. From 10d to 12d the Christy bump appears on the

rising branch and the atmospheric oscillation bump appears on the

falling branch. As tlh period increases beyond 12d the amplitude of

the atmospheric mode grows, but the compression of the HIR decreases

as the atmosphere and envelope begin to oscillate in phase. There

are no bumps from 15d to 30d since the compression of the HIR is too
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small to produce observable shocks. At about 25d Pa Pe, the

atmosphere is oscillating at its maximum amplitude, but there are no

bumps since the atmosphere and envelope are always in phase. Beyond

30d bumps appear near minimum light as the envelope begins to slow

down before the atmosphere leading to compression of the HIR near

minimum light.

As shown by Payne-Gaposhkin (1951) Cepheids with periods near

10d are anomalous compared to those at 8d and 12d . There is a dip in

the velocity amplitude-period relation and in the upper envelope of

the light amplitude-period relation near P = 10d . The anomaly can be-

understood if primarily envelope oscillations are being observed up

to 8d, and atmospheric oscillations are being observed beyond 12
d

4. Ratio of the atmosphere to the envelope period.

Further calculations will be needed to check the validity of the

above picture, but it can be examined for consistency using published

relations among L, Pe, R, and M. In the following discussion, R and

M are given in solar units and periods in days. In logarithmic form,

equation (111-3) becomes

log Pa = -2.14 + 2 log R - log M (111-4)

while the relation Pefp/D = Q(M,R) results in

log Pe = a + b log R + c log M. (111-5)

Combining the period-luminosity law and the mass-luminosity relation

results in an equation of the form

log M = logog P + e, (111-6)
e
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where the constants d and e depend on the choice of a mass-luminosity

relation. The scatter introduced into (111-6) by multiple crossings

of the instability strip will be small since 90% of the observed

Cepheids are expected to be in the second crossing (Iben 1966).

Similarly, Fernie (1968) has shown that a relationship of the form

log R = f log Pe + g (111-7)

can be expected. If equations (111-6) and (111-7) are to be

consistent with (111-5)

a + bg + ce = 0, (111-8)

bf + cd = 1

The values of the constants in equations (111-5) to (111-7)

can be found in the literature. Christy (1970) and Fricke,

Stobie, and Strittmatter (1972) give essentially the same values

for the constants in (111-5), namely

log Pe = -1.62 + 1.72 log R - 0.68 log M. (111-9)

Using Stobie's (1969c) mass-luminosity law gives

log M = 0.34 log Pe + 0.33, (III-10)

where the constant, e, has been adjusted slightly to give the correct

mass for RDT. Fernie (1968) has used the Wesselink method to find

log R = 0.56 log Pe + 1.24, (III-11)

where the zero point has been adjusted downward as suggested by

Parsons (1972).

Equations (111-9) to (III-11) do not satisfy the consistency

conditions (111-8). If the period-radius law, which was derived

directly from observations, is redefined so the consistency conditions

are satisfied

log R = 0.12 log Pe + 1.07. (111-12)
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The large change in the coefficients in the period-radius relation

indicates that either the wrong mass-luminosity law was used, or

there are systematic errors in the radii determined using the

Wesselink method. The former possibility will be investigated below,

and the latter in Chapter VI. Equation (111-12) agrees almost ex-

actly with the relationship given by Wooley and Carter (1973) indi-

cating an error in the Wesselink method as used by Fernie and Parsons.

The adopted relationships are

log Pe = -1.62 + 1.12 log R - 0.68 log M, (111-13)

log M = 0.34 log P + 0.33, (111-14)e

log R = 0.72 log Pe. + 1.07 (III-15)

log Pa= -2.14 + 2 log R - log M. (111-16)

Substituting equations (111-14) and (111-15) into (111-16) gives

log Pa = l.0 log P - 0.33,a e

or log (Pa /P) = 0.10 log Pe - 0.33 (111-17)

Equation (111-17) indicates Pa = P near log P = 3 which does not

support the explanation of the double bump Cepheids give above.

Repeating this analysis using the results of stellar evolution

theory as given by Iben and Tuggle (1972a) and again defining the

period-radius law from the consistency conditions gives

log P = -1.53 + 1.73 log R - 0.79 log M, (111-18)

log M 0.30 log Pe + 0.56, (111-19)

log R%= 0.72 log Pe + 1.14. (111-20)

Note that the period-adius law (111-20) is nearly the same as

(111-15). The discrepancy with the observed relation (III-11) is,

therefore, not due to the choice of a .particular mass-luminosity law.

Substituting (111-19) and (III-20) into (111-16) gives
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log (Pa/Pe) = 0.21 log Pe - 0.30, (III-21)

indicating P = P near P = 30d
a e e

One of two conclusions can be reached from this analysis. Either

the analysis of the atmospheric oscillations is in error, and the

bump on the falling branch of the light curve has a different origin,

or the mass-luminosity relation predicted by evolution theory is

more nearly correct than that of pulsation theory. There is other

evidence to support the evolution masses. If masses determined from

the phase of the second bump are ignored, both Fricke, Stobie, and

Strittmatter (1971, 1972) and Iben and Tuggle (1972, a,b) can explain

the mass discrepancy. Since the pulsation masses depend critically

on the calibration of the observations, reasonably small changes in

the Teff vs. (B-V) relation, the helium abundance, and the zero point

of the period-luminosity law can remove the mass discrepancy. But,

if there are two mechanisms which can produce bumps on the light curves,

the bump masses should be ignored.

Although this discussion favors the evolution masses, the

question cannot be settled without computing more models with many

optically thin zones, a time consuming procedure. Additionally,

more accurate values for the constants in equations (111-5) to (111-7)

are needed. In particular, the variation of the pulsation constant,

Q, with mass and radius is not well-known. The results of Cogan (1970),

Cox, King, and Stellinwerf (1972) are considerably different from

those of Christy (1970), Fricke, Stobie, and Strittmatter (1972), and

Parsons and Bouw (1971). Further study including the effects of

convection is needed.



TABLE III-I

NUMBER ABUNDANCES USED

FOR KING IVa TABLES

X = 0.70 Y = 0.28 Z = 0.02

ELEMENT ABUNDANCE

H 9.07156E-1
He 9.13793E-2
C 2.84443E-4
N 8.01673E-5
0 6.36793E-4
Ne 3.58809E-4
Na 1.42560E-6
Mg 1.79473E-5
Al 1.18576E-6
Si 2.27738E-5
Ar 2.38399E-5
Fe 3.69354E-5
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Figure III-1. log T vs. log (1-Q) in the equilibrium model



12

10-

8

06
0

I
.j

4

2

00 -1 -2 -3 -4 -5 -6 -7 -8

LOG (1-Q)



-3

-4

-5

- -7

-8

-9

-10 I I I I
0 -1 -2 -3 -4 -5 -6 -7

LOG (1-Q)
Figure 111-3. log pvs. log (1-Q) in the equilibrium model



2.4
DIFFUSION -- RADIATIVE

APPROXIMATION TRANSFER
2.0

Cr
w 1.6-

1.2

E
L 0.8

0.4-

0.0 I I I I I
0 20 40 60 80 100 120 140 160 180 200

PERIODS
Figure 111-4. Approach of KEmax to full amplitude. The periods for

which the diffusion approximation and solution of the
transfer equation were used are indicated.



3.8

2 3.7

0

3.6

3.5

3.4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PHASE
Figure 111-5. log L/L vs. phase for the full amplitude model



54

30

24-

16-

S8
in

0

-. J
w -8-

-16

-24-

-30 I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PHASE

Figure 111-6. Velocity at 7 = 0.2 vs. phase for the full amplitude model



25

20 -

S15 5II

10 -

>- \ 

o
- I -
LU> 5 \

v ('r=1)
v (r=0.1)

-10 - ----- v (r=0.001)
I - v.(Q =CONST)

-15 -
I \

-20 / - RMIN - RMAX i

-25 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 L'

PHASE

Figure 111-7. Velocity curves for the full amplitude model



56

Figure 111-8. Luminosity vs. mass point and phase. Every second mass
point has been plotted. Point A is in the Hell ionization
zone; point B, the top of the quasi-adiabatic envelope,
point C, the atmosphere.
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CHAPTER IV

CONTINUOUS SPECTRUM

A. Atmosphere calculation.

1. Snapshot approach.

In the preceding chapters the model has been discussed in terms

of pulsation theory. Since many optically thin zones were included

in the calculation of the hydrodynamic models, it is also possible to

discuss.the model in terms of stellar atmospheres. The hydrodynamic

equations (II-1) to (II-5) are most easily solved if a Lagrangian

mass coordinate is used as the independent variable. On the other

hand, the light emerging from a model is more easily computed if the

optical depth, T, is the independent variable. The physical parameters

of primary interest are also different. For example, while the total

pressure is needed to calculate the hydrodynamic motions, the electron

pressure is more important for determining the emergent spectrum.

To facilitate the stellar atmosphere calculations, the optically

thin zones of the hydrodynamic models were used as snapshots of the

atmospheric structure. Since all relevant physical variables change

on a time scale much greater than the time it takes a photon to diffuse

through the atmosphere, no large errors are introduced by using this

snapshot approximation. This assumption is the same one made in

dropping terms of order v/c in the transfer equation. After describing

the methods used to convert the hydrodynamic models to a form suitable
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for the atmosphere calculations, the properties of the continuous

spectrum will be discussed in the remainder of this chapter. Chapter V

will be devoted to a discussion of the line spectrum.

2. Converting the models.

The hydrodynamic models at 200 phases at equal phase intervals

of 0.005 period were converted to a form with Rosseland mean optical

depth, dT = Kpdr, as the independent variable. The atmospheric models

were computed starting at the surface and were continued inward until

the temperature reached 25,000*K. In all cases the base of the

atmosphere was at a large enough optical depth that including more

points would not change the computed spectrum.

Before computing the emergent spectrum, the electron pressure,

Pe, had to be determined. Since Pe depends on the number of free

electrons determined from the Saha equation, and Pe is needed to

compute the ionization fractions, an iteration must be.performed to

find P . This iteration is described in Appendix C. Knowing the
e

variation of temperature, density, radius, and electron pressure with

optical depth makes it possible to compute the spectral energy dis-

tributions of the models. The monochromatic opacity, KXwas computed

with a code written by Bell (1974) that includes the continuous

opacities of H, H , H2 , H2 , He, He , Sil, MgI and Rayleigh scattering.

Next the monochromatic optical depth scale was computed from

T K

and the transfer equation was solved to give the flux at the desired

wavelength, FA .
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The wavelength region from 9121 to 5b was divided into 21

wavelength bands whose boundaries occur at the absorption edges of

the continuous opacity sources. A Gauss-Lobatto quadrature using

4, 6, or 10 wavelength points was performed for each band. The

sum of the contributions of these bands represents the total flux

of the model

134
F =  d i=l1 i = T /eff (IV-1)

Equation (IV-1) was used to define the effective temperature of the

model, Teff, at each phase.

The total flux was defined as the integral of F% not Fy since

2 -Fx( = 54) / max FX - 10- 2 while FV ( = 5p) / max F ~ 10

Since there is essentially no flux shortward of 9121 for stars in

this temperature range, the integration can be computed with fewer

quadrature points if F is used. Computing BJdA with these

quadrature points resulted in an error of 0.3%. Before these fluxes

can be used to compute colors, the effect of the spectral lines must

be taken into account.

3. Line blocking approximation.

In the range of spectral types populated by Cepheids, the contribu-

tion of spectral lines to the total opacity is large in certain wave-

length regions. Because including the effect of lines in the mono-

chromatic opacity would require an excessive amount of computer time,

the line blocking approximation was used. In this approximation, the

flux in each wavelength band is multiplied by a line blocking factor,

0 1 T 1, which represents the fraction of the flux absorbed by the

lines in the band. The line blocked flux, FB, is then defined by
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FB = (- FU, (IV-2)

where FU is the flux computed including only continuum opacity sources.

This approximation does not conserve energy since the flux removed

by the lines is simply ignored; but, since gray radiative transfer was

used to compute the hydrodynamic structure, it was felt that use of

the line blocking approximation was warranted.

Figure IV-I shows lvs.k for a model taken from Parsons (1969)

having Teff = 60000 K and log g = 1.8. The line blocking factors are

those of Bell (1974). Figure IV-2 illustrates the difference between

FB and FU. The dashed line is the spectral energy distribution

computed using only continuous opacity sources; the solid line in-

eludes the line blocking factors shown in Figure IV-i. Note the

linear scale of the ordinate chosen to accentuate the difference

between FB and FU . It is clear from Figure IV-2 that the line blocking

has a reasonably large effect on the U, B, and V magnitudes but changes

the R and I magnitudes only slightly.

The line blocking factors are in the form of tables of 1 vs, X

for a set of Teff and geff* Before the line blocking factors can be

applied to the hydrodynamic models, Teff and geff must be defined.

The method used is described in the following section.

4. Effective temperature and gravity.

The parameters of major importance in the hydrodynamic calculations

were the luminosity emerging from the model and the radius of the photo-

sphere. The line blocking factors, though, are tabulated in terms of

Teff and geff. The effective temperature of the model can be found by

solving L = 4nR 2aTf but determining.gff is more complicated. A

stellar atmosphere is hydrostatic equilibrium has a unique gravity,
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g = GM / r . The hydrodynamic models, on the other hand, are

experiencing accelerations and each zone has an effective gravity

given by

gef =  dP =- GM + i, (IV-3)
dm 2r

where i is the acceleration of the zone. A suitable method for

finding the mean value of geff in the line forming region of the

atmosphere was needed.

A stellar atmosphere is normally defined in terms of Teff and

geff Teff is a measure of the temperature of the model; geff, of

the pressure. For this reason, the mean effective gravity of the

atmosphere, gff, was defined from equation (IV-3) as

G dP
-- dm e- d/ T
geff 0e -T/T dt (IV-4)

where To = 0.1 was chosen to limit the average to the line forming

region. This value of geff was used along with Teff to determine

the line blocking factors at each phase.

The variations of Teff and geff with phase are shown in Figures IV-3

and IV-4, respectively. The large spike in log geff and the dip in

Teff near phase m = 0.15 may be artifacts of the artificial viscosity

(see Chapter III). The large increase in log geff near & = 0.5, on

the other hand, is real and is caused by a shock moving out through

the atmosphere. If the feature near m = 0.15 on the log geff curve is

ignored, the variation is found to be less than has been observed by

Schwartzchild, Schwartzchild, and Adams (1948), Schmidt (1971b), and

Parsons (1971 a,b). This difference is not significant since geff of

RDT was found by averaging over the entire atmosphere while the observed
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dynamic gravities refer to a small part of the atmosphere. The geff

variation of a given zone is much larger but spurious accelerations

due to zoning effects are also enhanced.

Oke, Giver, and Searle (1962) in their analysis of the RR Lyra

star SU Draconis found a range of phases having roughly constant

Teff and geff" As shown in Figure IV-5, RDT behaves differently.

Ignoring the effects of the atmospheric snock wave and the spike

caused by the artificial viscosity (by following the dashed lines in

Figure IV-5) gives an open curve in the log geff - log Teff diagram.

During rising and falling light, the atmosphere moves at nearly

constant geff i.e., isobarically, while near maximum and minimum

light, it changes isothermally. If it is assumed that the pressure

at some point in the atmosphere is proportional to geff, and that the

perfect gas law with Teff and this pressure can be used to find the

specific volume, V, a P - V diagram can be constructed (Figure IV-6).

The dashed lines in Figure IV-5 have been followed in constructing

this diagram. Following the actual gravity variation instead results

in the addition of two long, narrow loops containing little enclosed

area. Since these loops needlessly clutter the diagram and contribute

little to the discussion, they are not shown. The area enclosed by

this curve indicates that the atmosphere has a destablizing effect on

the model. Although this curve is not a proper thermodynamic integral

since it does not follow a given mass element, Christy (1962), who

constructed a similar diagram from observations of SU Dra, concludes

that this P - V diagram reflects the influence of the HIR on the star.

5. Defining the color system.

Once T and geff have been found for each model, the line
eff energy distributions

blocking factors can be applied to the spectral energy distributions
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computed above, and the broad band UBVRI colors can then be calculated.

The relative filter sensitivity functions for the U, B, and V filters

were taken from Azusienis and Straizys (1969) and those of R and I from

Johnson (1964). These magnitudes were on an arbitrary scale. In order

to make comparisons with observations, V, U-B, B-V, V-R, and R-I were

converted to Johnson's system using least squares fits to

C = a + bC, (IV-5)

where
C = color in Johnson' system,

C = color in arbitrary system.

Line blocked spectral energy distributions of Parsons' (1969) models

were used for the calibration. Unfortunately, there was no single

source available that gives the Johnson colors needed for the trans-

formations (IV-5). The (U-B)j and (B-V)j colors were taken from Bell

and Parsons (1974); (R-I)j was taken from Schmidt (1973); (V-R)j was

computed from the calibration by Caputo and Natta (1973). The absolute

visual magnitudes:, V, were computed from the bolometric magnitude using

the bolometric correction of Kraft (1961). All colors given in the

following are on Johnson's system.

The absolute visual magnitude light curve, M vs. 2 is shown in

Figure IV-7. Although the zoning effects are smaller than 0O05, it

was found that they masked features of interest on the HR and color-

color diagrams. The light curves were, therefore, smoothed to minim-

ize these zoning effects. These smoothed light curves shown in Figure

IV-8 were used for the comparison with observations discussed in the

next section.
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B. Comparison with observations.

1. Light curve parameters.

The light curves computed in the previous section were compared

with observations. Since the model was not selected to represent a

specific star, the theoretical results were compared with the mean

properties of Cepheids with periods near 12d . In Figure IV-8, the

increase of light amplitude with decreasing effective wavelength is

readily apparent. Somewhat less apparent, but still discernable,

is the phase shift noted by Stebbins, Kron, and Smith (1952) and

Wisniewski and Johnson (1968). This phase shift is in the sense that

long-wavelength light curves lag short wavelength light curves. The

phase shift between the U and I curves of RDT is about 0.04 period in

good agreement with observations. Table IV-I compares the light ampli-

tude of RDT with observed values from Wisniewski and Johnson (1968).

Unfortunately, the only Cepheid they observed with a period near 12
d

is C Gem, a star with a low-amplitude, symmetric light curve. The

table shows that the RDT amplitudes fall within the observed ranges.

RDT can also be compared with the light curve parameters published

by Schaltenbrand and Tammann (1971). Table IV-2 compares RDT with all

classical Cepheids in the period range 11d to 13d that they observed.

Again the values for RDT fall within the range of observed quantities.

Figure IV-9 and Table IV-3 give the adopted light and color curves

for RDT.

2. Color-temperature relations.

A further check on the models can be made. By treating each of

the 200 models as an independent observation, the color-temperature
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laws can be computed. Figure IV-10 shows the dependence of (U-B),

(B-V), (V-R), and (R-I) on log Teff. The dependence of (U-B) on

geff produces the open curve in the (U-B)-log Teff plane. The

(B-V), (V-R), and (R-I) curves, on the other hand, closely approxi-

mate straight lines and should, therefore, be good temperature

indicators. The fits to the relationships

log Teff 
= a + b(X-Y),

and
aeff = c + d(X-Y),

where (X-Y) represents the color, are given in Table IV-3, as are

the relationships derived by Schmidt (1971a). For comparison,

Kraft (1961) gives log Teff = 3.886 - 0.175 (B-V) and Rodgers (1970)

gives e = 0.64 + 0.337 (B-V).

This agreement with the observed values is much better than

expected and results from partial cancellation of two errors.

Ignoring convection produces a model having too large a temperature

gradient in the photosphere. Using the line blocking approximation,

which neglects the backwarming effect of the line opacity, produces

a model having too small a temperature gradient. Ignoring both

effects results in a temperature structure closely approximating that

of the stars studied. Since the observed color-temperature laws were

derived using nonpulsating super-giants and hydrostatic model atmospheres,

the accuracy of the color temperature fits indicates that deviations

from radiative equilibrium must be small, as predicted by Whitney

(1967). The use of static model atmospheres to study the colors of

Cepheids should, therefore, produce reliable results.
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C. Loops in the (U-B)-(B-V) diagram.

Having established that the colors of RDT reproduce the observed

colors allows the models to be used to answer questions requiring a

theoretical approach. One of these questions has already been

answered. The hydrodynamic atmospheres are nearly in radiative

equilibrium at most phases and can be approximated by a series of

hydrostatic model atmospheres.

Another interesting question is the cause of the loops in the

(U-B) - (B-V) diagram. Abt (1959) has suggested that the loops are

caused by

a) excess ultraviolet emission from shocks,

b) sensitivity of the continuous opacity, KC

to the electron pressure, Pe'

c) unusual line blanketing,

d) lines being partially filled in by:emission lines,

e) continuous emission possibly originating in a chromosphere, or

f) non-thermal dependence of line strength (i.e., with Pe).

Figure IV-lla shows the color-color diagram for RDT. The curve

resembles that of I Aql and would be classified by Nikolov and

Kunchev (1969) as being linear or nearly linear. The curve is notice-

ably open from phase = 0.1 to = 0.5 having a maximum width of 0f04

in (U-B). Since neither emission lines nor chromospheric emission was

included in the model, the loops could not be produced by (d) or (e).

Figure IV-llb shows the color-color diagram for RDT excluding the line

blocking factors. Due to the change of scale the curve appears to be

much more open but still has a maximum width of 0T05 in (U-B). Since

lines have -ot been included in calculating this case, the openness
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cannot be explained by (c) or (f). There is a strong shock in the

atmosphere only near = Om5 and the excess emission amounts to about

m
0.02 in (U-B). Possibility (a), therefore, can be excluded. Only (b),

the sensitivity of KC to Pe ,remains. In the temperature range of RDT,

the continuous opacities of H and H are the primary opacity sources.

In the atmosphere, most of'the free electrons come from the metals,

aid the ionization of the metals depends linearly on Pe through the

Saha equation. Since the wavelength dependences of the H and H

continuous opacities differ, a change of P at fixed temperature wille

change H /H and, therefore, the wavelength dependence of KC . Since

the U filter contains the Balmer jump, this effect will be more pro-

nounced in U than in B or V, producing a loop in the color-color diagram.

D. Mean colors of Cepheids.

Figure IV-12 indicates another problem. The model traces an

open path in the HR Diagram running nearly parallel to 'the lines of

constant period and covering the entire width of the instability strip.

Many attempts at defining period-luminosity or period-luminosity-color

relations depend on the mean values of the luminosity and colors.

There are at least 3 distinct methods for computing these means,

a) the intensity mean of the color-(B-V)1,

b) the magnitude mean of the color-(B-V)M,

c) the difference of the intensity means of two

magnitudes-(B) I - (V)I,

Unfortunately, these method do not give the same results. Table

IV-4 compares these means with the colors of STB. Method (c) is

normally considered to be the most physically meaningful average
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since conservation of energy in a steady state system requires

P

(L> =  Ldt = LSTB
0

where L is the bolometric luminosity and P the period. There is

nothing to require this relationship to hold in a limited wavelength

region, however, since the wavelength dependence of the luminosity

varies during the cycle. Table IV-4 indicates, however, that method

(c) does best reproduce the values for STB confirming the results of

Cox and Wing (1973). The discrepancy between the mean values of

(U-B) from methods (a) and (b) and that of STB is difficult to

explain, but there appear to be two possibilities. First, since the

U filter contains the Balmer jump, it is sensitive to the confluence

of the hydrogen lines near 3650i and, therefore, to geff* Second,

the U filter contains the wavelengths with both the largest and the

smallest opacities. The U magnitude, therefore, is affected by a

larger region of the atmosphere than the other filters. Deviations

from radiative equilibrium will affect the U magnitude for a larger

fraction of the cycle than it will the other magnitudes. In either case,

the larger amplitude in U will accentuate the differences among the

averaging schemes.

E. Zero point of the P-L relation.

One further point of interest is the location of STB in the HR

Diagram. The + in Figure IV-12 marks the location of STB and the

dashed lines show the Sandage and Tammann (1969) instability strip

and two lines of constant period. The location of STB indicates

that the zero point of the Sandage and Tammann P-L-C relation should

be lowered by 0T2. Tben and Tuggle (1971b) supgest that this large a
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change is reasonable considering the uncertainties in defining the

zero point. Unfortunately, they suggest an upward revision to remove

the discrepancy between the pulsational and evolutionary masses. On

the other hand, recent studies of the zero point using secular paral-

laxes indicate the adopted zero point might be too high. Jung (1970)

finds that the shift should be AM = OT4 ± OT4 while Wielen (1974)

gives AM = OT2 ± OT4. Wielen points out that the increase in the zero

point required by Iben and Tuggle cannot be ruled out and is just barely

tolerable.

Due to the approximations made in computing the models, the results

presented in this chapter must be considered tentative. More accurate

models are needed to verify the correctness of these conclusions. The

inaccuracies of the models are even more important when the line pro-

files are considered in the next chapter.
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Table IV-1

Comparison of observed and

computed light amplitudes

STAR P AU AB AV AR AI

X CYG 16.4 2.4 1.6 1.0 0.60 0.42

RDT 12.1 1.9 1.6 1.0 0.55 0.45

U AQL 7.0 1.5 1.2 0.8 0.52 0.42

Table IV-2

Comparison of observed and

computed light curve parameters

STAR AV A(B-V) A (U-B) A

RX AUR .692 .356 .461 -.505
SS CMA .992 .457 .485 .553
XX CAR .835 .457 - .642
RY CAS .969 .494 .528 .599
XX CEN .886 .453 .508 .511
KK CEN .979 .539 - .528
SU CRU .678 .663 .668 .664
FZ CYG .778 .525 .533 .519
AA GEM .672 .434 .457 .532
UU MUS 1.031 .582 .705 .636
U NOR .967 .472 .553 .541
SY NOR .890 .334 .319 .646
SV PER .787 .404 .293 .609
Z SCT 1.001 .549 .831 .596
TY SCT .881 .453 .678 .534
DR VEL .570 .342 - .544

RDT .99 .49 .46 .57
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Table IV-3

Adopted light and color curves

MBOL  MV  U-B B-V V-R R-I

0.00 -4.051 -3.922 0.648 0.807 0.674 0.461

0.05 -4.132 -4.039 0.553 0.736 0.627 0.427

0.10 -4.275 -4.223 0.445 0.628 0.555 0.380

0.15 -4.347 -4.310 0.381 0.568 0.517 0.351

0.20 -4.510 -4.500 0.345 0.490 0.454 0.314

0.25 -4.537 -4.525 0.351 0.506 0.463 0.313

0.30 -4.657 -4.647 0.327 0.439 0.426 0.298
0.35 -4.758 -4.758 0.338 0.423 0.402 0.289

0.40 -4.720 -4.717 0.360 0.460 0.426 0.306

0.45 -4.612 -4.592 0.383 0.513 0.470 0.336
0.50 -4.457 -4.403 0.434 0.611 0.544 0.372

0.55 -4.405 -4.337 0.467 0.642 0.565 0.390

0.60 -4.421 -4.354 0.483 0.649 0.567 0.393
0.65 -4.369 -4.290 0.543 0.704 0.597 0.411

0.70 -4.280 -4.174 0,607 0.763 0.641 0.436

0.75 -4.195 -4.062 0.678 0.833 0.681 0.457

0.80 -4.102 -3.944 0.717 0.843 0.706 0.482

0.85 -4.030 -3.854 0.754 0.871 0.725 0.497

0.90 -3.972 -3.782 0.781 0.914 0.746 0.503

0.95 -3.973 -3.802 0.752 0.886 0.725 0.493



Table IV-4

Color-temperature relations

log Tef f = a + b(X-Y)

ef f = c + d(X-Y)

Present Present Schmidt (1971)
a b c d c d

B-V 3.877 -.174 .642 .349 .641 .309

V-R 3.906 -.252 .583 .505 .543 .593

R-I 3.918 -.394 .561 .791 .574 .773

Table IV-5

Magnitude and intensity mean colors

U-B B-V V-R R-I V

(X-Y> I .507 .654 .571 .393

(X-Y)M .518 .665 .576 .396 -4.261

(X)I-(Y>) .451 .614 .552 .386 -4.302

STB .433 .634 .575 .386 -4.273
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Figure IV-1. Line blocking factors, 11, vs. X for a model with

Tr,- = 60000 K and og a = 1.8.
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Figure IV-2. Spectral energy distribution for a model with T = 60000K
and log g = 1.8. --- no line blocking;
- with line blocking. Note linear scale of ordinate.
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Figure IV-6. P-V diagram constructed using Teff and geff" The dashed

lines in Figure IV-3 has been followed in constructing
this curve. The,numbers indicate phase.
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Figure IV-7. Absolute visual magnitude, R vs.
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Figure IV-9. Adopted light and color curves for full amplitude model
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CHAPTER V

LINE SPECTRUM

A. Method.

1. Basic approach.

In the preceding chapter it was shown that the broad band colors

computed from the hydrodynamic model atmospheres agree with observa-

tions of Cepheids. Ideally, one.would also like to show that the

models reproduce the observed line spectrum. There are several

reasons why a detailed comparison was not made. The primary reason

is the large amount of computer time required to perform a synthetic

spectrum analysis. In addition, the models do not include line

blanketing, non-LTE effects, or non-gray radiative transfer, effects

that are expected to be more important in the line-forming region

than in the photosphere (Bohm-Vitense 1972; Osmer 1972). Since the

number of variables that must be changed to investigate the range

of observed phenomena is large, a somewhat heuristic approach was

adopted. A single line, the %4494.571 line of Fel (excitation potential

2.2eV), was chosen to give a reasonable variation of the number of

absorbers with depth in the atmosphere. The equivalent oscillator

strength, f, was treated as a free parameter. By varying f it was

possible to study the effect of the moving atmosphere on lines of

different strengths.

2. Computational prodedure*

The method for computing line profiles in a moving atmosphere

follows a suggestion made by Chandrasekhar (1945). The line

The material in this section is from Karp (1973).

96
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absorption is described by a Voigt profile, H(a,u), where a is the

damping parameter and u = (-XO)/AX D. When there are velocities in

the atmosphere, u must be modified to account for the motions of the

gas. This can be done by letting

u' = u + IvX/cAXD

where pv is the local velocity of the gas projected onto the line

of sight, and using H(a,u') to compute the line opacity. The

specific intensity can be computed from

f*B(tV)exp(-t 4) dty4L

and then the flux from

F(0) = 2 T (0, p)pdp

0
Other methods commonly used, such as the Feautrier method or the

quadrature integration of Milne's second equation (Kourganoff 1952),

cannot be used since the opacity is a function of p.

B. Microturbulence.

1. Velocity gradient mechanism*

Before considering the detailed line shapes, the equivalent widths

of the lines, W, were used to investigate microturbulence in Cepheids.

Struve (1932) introduced microturbulence to explain the anomalously

large Doppler broadening velocities he found in supergiants. This

was explained by Struve and Elvey (1934) as being due to either "a

turbulence of small eddies" or to "several shells which expand with

different velocities." The concept of microturbulence as a turbulence

of small eddies has been attacked by Worrall and Wilson (1972). They

claim that the concept of microturbulence is valid only in terms of

The material in this section has been adapted from Karp (1973).
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the reversing layer treatment of line formation and attribute the

large Doppler broadening velocities to inadequacies in the theory

of line formation, particularly the LTE assumption. It has also been

suggested by Evans and Schroeder (1972) and Andersen (1973) that

systematic errors in the measured equivalent oscillator strengths

are responsible for microturbulence. Since neither of the above

suggestions has yet been shown to be responsible for the observed

microturbulence, there is still a great deal of interest in small

scale turbulence. Hearn (1974) has recently shown that the flux

of energy required to maintain microturbulence is at least 100 times

greater than the acoustic flux generated by convection in the sun.

In supergiants the problem is not as bad but the acoustic energy is

still a factor of 10 too small to maintain the observed microturbulence

even though the acoustic flux is much higher (de Loore 1970).

It has been found that microturbulence varies with height in the

atmosphere of supergiants (Wright 1946; Huang and Struve 1960) and

with phase in Cepheids (van Paradijs 1972). Differential motions have

been reported in the atmospheres of supergiants of many spectral types

(Abt 1957; Rosendahl and Wegner 1970; Aydin 1972) and, in particular,

in Cepheids (van Hoof and Deurinck 1952; Sanford 1956; Dawe 1969).

Van Paradijs has noted that the microturbulence in Cepheids is a

maximum near the phase of most rapid contraction. Dawe (1969) and van

Hoof and Deurinck (1952) have shown that the velocity gradient is

appreciable at this phase. Sanford (1956) has shown that line widths

increase just before maximum light in T Mon and SV Vul, a phase at

which he observes a large velocity difference between weak and strong

lines. The effect of a velocity gradient on the curve of growth has
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been investigated by Abhyankar (1964 a,b), Kubiowski and Ciurla (1965),

Ciurla (1966) and Arakelyan (1969). Although they showed that a

velocity gradient raises the flat part of the curve of growth mimicing

microturbulence, no attempt was made to compare computed and observed

velocity differences. Before investigating the velocity gradient

mechanism using the hydrodynamic models, a preliminary study was made.

2. Test of the velocity gradient mechanism.

To make the test case as realistic as possible, a model atmo-

sphere with Teff = 6300"K and log g=1.8 from Parsons (1969) and the

Fel line discussed above were used. A wide range of effects was

studied by computing curves of growth for log a = -1, -2, -3 and for
-1

microturbulent velocities =0 and 5 km sec-1 by varying the number of

absorbers in the line of sight. These curves are shown in Figures V-1
-l

to V-3. The curves for §=0 and §=5 km sec-1 do not come together at

large 1n/0 because the ordinate is -log W/X instead of'-log W/A D. '

Underhill (1947) has shown that a velocity of expansion (or contraction)

constant in 7 cannot change the equivalent width, W, of a line. Such

a velocity field will produce asymmetric profiles, however, due to the

integration over the surface. As a check, several profiles were

-1
computed with v(T) = 20 and 40 km s . In no case was the change in

W greater than 1 per cent. This change is due to errors in the angle

and frequency integration and can be used as a rough estimate of the

numerical errors in all these calculations.

For these preliminary calculations, an arbitrary choice of v(T)

was made, v(T) = -.a log T. This is convenient because it allows a

correlation of mean optical depth of formation of a line and its



observed radial velocity and is nearly linear with geometric height

in the line forming region. An arbitrary constant may be added to

v(T) without changing W, but it will change the shape of the profile.

The results for 9=0 and 5 km s- and m=5 and 10 km s-1 are

shown in Figures V-1 to V-3. With a = 10 km s-1, the curve of growth

(Cal0) is nearly identical to the normal curve of growth with §=5 km s-1

(C ) until the damping portion is reached. In all cases Cal0 has a

wider plateau than C 5. An observer would interpret this as being

due to a lower value of the damping parameter, a. The decrease in a

at phases when § is large has been observed by Rodgers and Bell (1964,

1968). This change is a is easily understood. The vertical shift

between the damping parts of CtO and C,5 is proportional to the ratio

of the Doppler widths. Since C 5 and C 1 0 have the same Doppler width

as C§0 , the three curves must join in the strong line asymptotic limit.

The only way this can happen is for C&l0 to be below Ct5 as the lines

get strong.

Dawe (1969) has plotted observed velocity versus mean optical

depth of formation for weak lines in a Car. Reading from Dawe's

Figure 3, the weakest lines which are formed near T = 0.3 have a

velocity of about 18 kmn s- while those formed near = 0.1 have a

velocity of 22 km s-1. Rodgers and Bell (1968) have observed A Car

and find that 5 = 7.5 km s-I at this phase. If the above results can
-i

be extended to this case, a = 15 km s-1 should be used to correspond

to'the observed microturbulence which gives v(0.1) - v(0.3) = 7.2 km s 1

Correcting for the integration over the surface by the factor p = vpuls

Vrad = 1.375 (Parsons 1971) gives a predicted velocity difference of

5.2 km s "I which, considering the uncertainties involved, is in excellent
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agreement with the 4 km s-1 velocity 
difference observed by Dawe.

The radial velocities observed from the minima of the 
computed

profiles are given in Table V-1. An exact comparison is not meaningful

since the observed velocities and shapes of the 
lines are more sensitive

to the velocity distribution than is the shape of the curve of growth.

3. Microturbulence in the hydrodynamic models.

The hydrodynamic Cepheid atmospheres make it possible 
to study

the velocity gradient mechanism using more 
realistic velocities than

used in the preceding section. The mi.croturbulence was determined

for each of 20 models at equal phase intervals, 
0 0.05, by perform-

ing a differential curve of growth analysis 
relative to STB. Figure V-4

shows the curves of growth for STB computed by 
varying log gf for the

selected Fel line. After computing similar curves for the 20 hydro-

dynamic models, the curves were shifted horizontally until 
their linear

parts coincided. The remaining vertical shift is

2 2

DBV = log
vSTB

where DBV stands for the Doppler broadening velocity, v and vSTB

are kinetic velocities of Fe atoms in the hydrodynamic 
and stable

models, respectively, and is the unknown microturbulent velocity.

If it is assumed that the kinetic temperatures 
of the two models are

in the ratio of their effective temperatures, f/vST B can be found.

The kinetic velocity in STB was found from [DBV] measured in Figure V-4.

In Table V-2, which summarizes the results, Alog W 
= DBV , RD is

the ratio of the Doppler broadening velocities, v 
/vSTB is the ratio

of the kinetic vlocities, and is the microturbulent velocity, and
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AV is discussed below. All velocities are in km s-1

It is clear that the velocity gradients are not responsible

for all the microturbulence observed in Cepheids. Typical micro-
-i

turbulent velocities in Cepheids are 5 to 10 km s-I (Rodgers and

Bell 1964, 1968; Schmidt 1971b; van Paradijs 1972). The latter

value is supersonic. They also find that varies with phase with

-I
an amplitude of 2 to 5 km s- . The microturbulence in RDT only has

-i
an amplitude of 1 km s-1. Thus, the velocity gradient mechanism

cannot explain the variable microturbulence unless more accurate

models show that the effect has been underestimated here. However,
-1

since S rarely exceeds the sound speed by more than 1 or 2 km s-

in Cepheids, the velocity gradient may be responsible for the super-

sonic part of the microturbulence.

Since it appears that two phenomena contribute to the observed

microturbulence, an attempt was made to see how the classical micro-

turbulence, tcl' and the microturbulence caused by the velocity

gradients, gr, combine to produce the total observed microturbulence,

St. A test case was computed using the model at = 0 including

-1 -1
c = 2 km s in addition to tgr = 1.4 km s . It was found that

9t = 3.1 km s-I indicating the Doppler broadening velocity is consistent

with

DBV = TT + (c + r)2 .
m cl gr

Since the total microturbulence is not the square root of the sum of

the squares but is more likely t = §cl + gr, even a relatively small

9gr can make §t appear to be supersonic.
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Schmidt (1974) has attempted to correlate the observed micro-

turbulence with the observed velocity difference between weak and

strong lines and concludes that there is no apparent correlation.

Even when the velocity distribution in the atmosphere is known,

as it is in the models, specifying the correct velocity difference,

A V, for such a correlation is difficult. Since the velocity

gradient is not montonic, it is not clear how an average A V charac-

teristic of the atmosphere can be found. Figure V-5 shows t versus

A V where A V was defined as the maximum minus the minimum velocity

on'the interval 0.01 < T < 1. The correlation is weak and there is

a good deal of scatter, making it unlikely that the correlation

could be found observationally. The line shown, a least squares fit

to the data,is given by

S= 0.79 + 0.21 AV.

The line does not pass through the origin due to the problem defining

A V mentioned above.

From this analysis, it appears that microturbulence in Cepheids

is still a mystery. The velocity gradient mechanism is not significant

in producing the observed microturbulence and may not be large enough

to explain the observed variation of the microturbulence with phase.

Further work is needed.

C. Line profiles.

1. Asymmetries.

Having computed hydrodynamic model atmospheres makes it possible

to compare theoretical and observed line shapes. There are two

mechanisms which contribute to the asymmetry of the line profiles.
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One of these is a geometric distortion first studied by Chandrasekhar

(1945). The observed flux profile is a weighted sum of intensity pro-

files from different parts of the stellar disk. As illustrated in

Figure V-6, each intensity profile is Doppler-shifted by an amount,

v p, where p = cos 0 and vp = pulsation velocity of the atmosphere.

One such set of intensity profiles is shown in Figure V-7 and illus-

trates an important computational point. Enough angle points must

be included in the angle quadrature to insure sufficient overlap of

the intensity profiles. If too few points are used, spurious bumps

appear on the flux profile. Expressing the total width of the in-

tensity profile in velocity unit-s, vD, gives a condition on the maxi-

mum angle separation, A = v D/v. Sharper lines and higher velocities

require more angle points.

Even a constant velocity in the atmosphere will produce asymmetric

line profiles. According to van Hoof and Deurinck (1952) a line will

appear symmetric unless

0 > 2.5 (AX)
N

where X0 is the rest wavelength of the line; v, the velocity in the

atmosphere; and (AX)N, the half width of the undisturbed line. Thus,

weak lines will appear more asymmetric than strong lines. Figure V-8

illustrates this point. The weak line, (a), is very asymmetric while

the strong line, (b),.appears undistorted even though both lines were

computed with a constant atmospheric velocity of 20 km s-1. The

dashed line in (a) is the bisector of the weak line and is characteris-

tic of lines distorted by this geometric effect.
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The second mechanism distorting the line profile is most noticeable

in strong lines. Bell and Rodgers(1964) and Kraft (1967) have suggested

that the asymmetry of these strong lines is due to velocity gradients

in the atmosphere, i.e., different parts of the line are formed in

layers of gas moving with different velocities. Figure V-9 illustrates

the velocity gradient asymmetry. Not only is this line too strong to

show a noticeable geometric distortion, but its bisector has a shape

very different from that in Figure V-8(a). The profile in Figure V-9

can be compared to the 45081 line of Fell in B Dor observed by Bell

and Rodgers (1964).

The geometric distortion is expected to be most important at

phases of maximum velocity while the distortion of strong lines should

be greatest at phases of maximum velocity gradient. In view of the

difficulty of determining the velocity gradient from the velocity

difference between weak and strong lines, it appears the asymmetry of

strong lines is a better indicator of the velocity gradient in the

atmosphere.

2. Cheshire cat lines.

Another interesting phenomenon is the occurrence of "Cheshire

Cat" (Carroll 1865) lines. This phrase was used by Underhill (see

Kraft 1967, pg. 240) to describe the extra component of strong lines

often observed in Cepheids. These extra components seem to have no

antecedents, but suddenly appear at phases when strong shocks are

expected in the atmosphere.

Grenfell and Wallerstein (1969) have attempted to explain the

splitting of the 1H line in SV Vul in the following way. The red
cmnen of is due to gas falling inward at 70 s whic

componenL of H is due to gas falling inward at 70 km s , which
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appears to move a distance of half a stellar radius. The violet com-
-l

ponent, which has a velocity 40 km s-1 more negative than the metal

lines, is associated with the pulsation of the atmosphere. When

these two layers of gas collide, emission lines of H and He should

be observed but are not. Wallerstein (1972) suggests that the inward

moving material originates in a circumstellar shell. Skalafuris

(1974) suggests a different mechanism based on the work of Whitney

(1956), but also asserts that the splitting is due to velocity differ-

ences.

Kraft (1967) has stated that the velocity difference between the

two components may be as large as 30 to 40 km s for the low exci-

tation metal lines while Grenfell and Wallerstein (1969) and Wallerstein

-1
(1972) report velocity differences of up to 100 km s" in the H lines

of SV Vul and T Mon. Since the atmosphere of RDT never has velocities

greater than 30 km s-1 or velocity differences greater than 15 km s-,

the occurrence of the "Cheshire Cat" line shown in Figure V-10 indi-

cates a different origin for the secondary component. The deeper com-
-l -i

ponent has a velocity of 19 km s- while the shallower has -3 km s 1
-I

a difference of 22 km s-1. Examining the model shows the maximum

velocity difference is 3 km s-1 and the mean velocity is 10 km s-l

The splitting of the line is obviously not caused by differential motions.

Further inspection of the model revealed that there was a tempera-

ture inversion of about 300*K near T = 3 x 10-3 , the region in which

the line core is formed. To verify that the temperature inversion is

responsible for the line doubling, the same line was computed with all

velocities set to zero. The result is shown in Figure V-11. The central
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reversal is characteristic of a line core formed in a region in which

the source function increases outward. While a more detailed, non-LTE

calculation would probably not show as large a central reversal since

the source function in the line core could be smaller than the Planck

function, the line doubling could still occur for the strongest lines.

In fact, Thomas suggested that a temperature inversion was responsible

for the "Cheshire Cat" lines (see Kraft 1967, pg. 239). The asymmetry

of the line core can be caused by purely geometric effects as illus-

trated in Figure V-12. This profile was computed with a constant

-1
velocity of expansion of 10 km a . This profile is nearly identical

to that in Figure V-10 except for the direction of the asymmetry caused

by the different signs of the velocities used in the two cases.

It is now possible to explain why the "Cheshire Cat" lines in

and Call K are displaced more from the primary component than those

of the metal lines. Since the temperature inversions in RDT occur

only above T = 0.01, only the part of the line formed above this point

in the atmosphere can show the central reversal. A large part of H

is formed in this region, and, therefore, the velocity difference

between the two components will be greater than that of the metal lines.

Although the models are inadequate for computing profiles of

strong .lines, H profiles were computed for a qualitative comparison

with observations. No attempt was made to accurately reproduce the

observed line shapes. In fact, the H lines shown in Figure V-13

were calculated using a Voigt profile instead of the more accurate

Stark broadening. The lines have flat bottoms because the-models do

not extend to small enough optical depths and .because of the LTE

s-urce function used. Qualitatively, though, the agreement with the
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H profiles published by Grenfell and Wallerstein (1969), Wallerstein

(1972), Rodgers and Bell (1968), and Schmidt (1970) is excellent.

While some of the irregularities in the profiles are associated with

temperature fluctuations caused by zoning effects, several of the

profiles indicate the presence of temperature inversions. In

particular, the profile at 4 = 0.55 shows the effect of the shock

wave that produces the second bump on the light and velocity curves.

One of the problems associated with "Cheshire Cat" lines is the

threshold effect (Skalafuris 1974). In Cepheids the line splitting

occurs only for the strongest lines, while in W Vir and RR Lyr stars

the line doubling often occurs in weaker lines. If the splitting is

caused by temperature inversions, two phenomena contribute to the

threshold effect. First, as a pressure wave moves outward, it

encounters a decreasing density. Conservation of mass requires that

the wave must accelerate. Thus, the strongest shocks occur highest

in the atmosphere. The energy dissipation at the shock front produces

a temperature rise. Second, as shown in Chapter II, the time it takes

an element of gas to return to radiative equilibrium following a per-

turbation increases as the optical depth decreases. In the region

where the weak lines are formed, the gas requires only a few seconds

to return to equilibrium, while higher in the atmosphere where the

cores of the strong lines are formed, the time it takes the gas to

return to equilibrium can be several thousand seconds(Whitney 1967).

In-this time the shock will have travelled about half a pressure scale

height and crossed several zones in the model producing a reasonably

thick layer with an elevated temperature. The splitting of weak lines
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in population II variables is, then, indicative of shocks in their

photospheres.

The tm sprature structure of the shock front will be modified

by the use of an artificial viscosity pressure, though. Instead of

hmving a temperature discontinuity at the shock front, the temperature

rise will be spread out over 3 or 4 zones. However, ignoring the

effects of radiation from the heated gas at the shock front, the

total temperature rise across the shock should be the same whether

or not artificial viscosity is used (Richtmeyer and Morton 1967).

If radiation effects are included, the error in the temperature rise

depends on the ratio of two characteristic times. If the time it takes

the gas to return to thermal equilibrium, tR, is shorter than the time

it takes the shock to move a distance equal to its thickness, ts, then

using artificial viscosity will lead to an underestimate of the tem-

perature rise. If, on the other hand, tR > ts, the temperature rise

across the shock front will be independent of the artificial viscosity.

In the region of interest in RDT tR ~ 5000 sec, and the thickness of

the shock is 3 or 4 zones, AX = 5 x 109 cm. If the shock moves at

roughly the sound speed of 10 km s-, then tR ts . The temperature

inversions in RDT are, therefore, underestimates. This error is

unimportant, though, since the assumptions made in computing the

atmospheric structure are not completely valid in the region where the

shocks occur.

Care must be taken when measuring velocities of strong lines.

The practice of treating each component of the line as a distinct

layer of gas produces erroneous velocity curves. Neither component

represents the motion of the atmosphere. Even if the splitting is
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not observed and the line core appears to be symmetric, there may be

incipient splitting that has been masked by macroturbulence, micro-

turbulence, or instrumental broadening. Velocities of strong lines

should, therefore, be measured at some point in the wings of the

line. This point will be discussed further in the next section in

which the velocity curves are discussed.

D. Velocity curves.

1. Ratio of pulsational to radial velocity.

In order to interpret radial velocities obtained from measure-

ments of spectral lines, the center to limb variations of the

specific intensity must be taken into account. In effect, the

center to limb variations reduce to a determination of p, the ratio

of the pulsation velocity of the atmosphere, vp, to the measured

radial velocity of the line, vr. The value of p differs from 1

because the observed flux profile is a weighted sum of intensity

profiles with different line of sight velocities. (See Figure V-6).

The early attempts at calculating p (Shapley and Nicholson

1919; Carroll 1928; Getting 1935; van Hoof and Deurinck 1952) all

made the assumption, either implicitly or explicitly, that the

Doppler shift of the line was less than the line's Doppler width.

This assumption is not always valid in Cepheids since the lines are

-1
typically 5 to 10 km Sa wide while the pulsation amplitude is of

the order of 20 to 30 km s-l. In effect, the assumption reduces to

the statement that the minimum of the flux profile is simply the

weighted average of the minima of the intensity profiles from p = 1

to P = 0. In the case shown in Figure V-7, it is clear that intensity



profiles from p < 0.4 have little effect on the- location of the

flux minimum. If the limb darkening law is given by

_ = (i-B) + L (v-l)

I(1)

this assumption leads to

p = 6- 20 (V-2)
4-

Since equation (V-2) gives 46 p 1 for 0 ~l, several

investigations have concluded that the calibration of p has only

a small effect on the computed velocities. Since the basic

assumption used to calculate equation (V-2) is not valid for

Cepheids, Parsons (1972) recalibrated p and showed that p is a

function of y, the ratio of the velocity of the atmosphere, v p, to

the observed width of the line including instrumental broadening v,.

Since RDT differs from the models used by Parsons, a similar calcula-

tion was performed,

Three models were selected for the study, STB, Q = 0.2, and

S= 0.7, corresponding to mean, minimum, and maximum radius,

respectively. For each model, p was computed for a set of veloci-

ties and values of log gf. The effect of instrumental broadening

was included by convolving each profile with a Gaussian slit

function 0.041 wide, while rotation and macroturbulence were in-

cluded by convolving the profiles with the rotation broadening

function given by Huang and Struve (1960) with v sin i 
= 10 km s .

Although Kraft (1966) has concluded that Cepheids probably do not

rotate, Abt (1958) has shown that this rotation cannot be distinguished
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from a macroturbulence of 7 km -1, a value characteristic of Cepheids.

The bisector of each profile was constructed and used to determine the

velocity at the minimum, half intensity, and l/e points of the profile.

A total of 864 values of p was determined having an average of

p = 1.31 ± 0.03. The value of p was found to be insensitive to the

model, changing by only 0.02 between the models at minimum and maximum
-1

radius. If only those cases with line widths of 7 km s-1 are consid-

ered, the average p = 1.30 h 0.02. Since most Cepheids have line

widths of this order, a constant value, p = 1.30, was adopted. The

error in p introduces only a 2% error in the velocity.

Although a constant value of p was adopted, Figure V-14 shows

some interesting correlations. The abscissae are y = v/v and the

ordinates p. In all four graphs, the dashed lines are given by

p = 1.37 - 0.03y taken from Parsons (1972). Figures (a) and (b)

show p(y) for a weak and strong line, respectively, measured at the

minimum of the profile while (c) and (d) represent the same lines

measured at the half intensity points. In both cases, the strong

line has a weaker dependence on y than the weak line. In addition,

when the velocity is measured at the half intensity point, p is nearly

independent of y. The near constancy of p when the velocities are

measured at the half intensity point combined with the problem of

incipient splitting of the cores of the strong lines indicates that

the half intensity point should be used to determine velocities. In

particular, the practice of using the line core when it is symmetric

and the wings when the core is distorted will produce spurious.scatter

in the velocity curves.
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2. Comparison of hydrodynamic and line profile velocity curves.

If the line core cannot be used to find the velocity of the upper

atmosphere, the problem of detecting velocity gradients becomes more

difficult. Figure V-15 shows how a velocity characteristic of the

line core can be found. The dashed lines are extensions of the wings

from points near the line core. The velocity determined from the

point of intersection of the extrapolated wings agrees with the

velocity of the upper layers of the model with an accuracy of about

107.. In the example shown with p = 1.30, the predicted value is

14.5 km s-1 while the model gives 13 km s- I for the region in which

the line core is formed.

The easiest way to compare the velocities of the models with the

velocities determined from the profiles is to compare velocity curves.

Figure V-16 shows the velocity curves for a weak, intermediate, and

strong line represented by a dashed, solid, and dot-dashed line,

respectively. To make the comparison as representative as possible

these velocities were measured at the minimum of the unconvolved

profiles. The arrows indicate phases at which the strong line has a

split core. Only the deeper component was measured leading to the

deviations from the other velocity curves. The open circles show

the velocity of H determined by the extrapolation of the line wings

discussed above. A comparison with Figure III-7 indicates that

measurements of the line profiles underestimate the velocity differ-

ences between the optically thin and optically thick layers. This

result is not surprising since the line profiles represent averages

over a range of continuum optical depths. Note, however, that the

phase shift between H and the metal lines near m = 0.5 is nearly the
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same as the phase shift between 7 = 10-3 and 7 .= 0.1 at the same

phase. In addition, the feature on the velocity curve near = 0.2

can be seen only for the strongest lines in agreement with Figure 11-7.

3. Center of mass velocity.

One of the problems facing an observer studying Cepheids is the

determination of the center of mass velocity of the star, vO . This

value is needed both for kinematic studies (Kraft and Schmidt 1963;

Wielen 1974) and for determining the radius of the star using the

Wesselink (1946) method. Oke, Giver,.and Searle (1962) have estimated

-1
that an error of 1 km s in v0 results in an error of 107% in the

derived radius.

The center of mass velocity is normally defined by finding

vO such that

(v-v 0 )dt=O . (V-3)

Due to changes in the opacity scale during the pulsation, the velocity

curves do not follow a given element of gas. There is no guarantee,

therefore, that a strict application of Equation (V-3) will give an

accurate value of vO.

In order to check the importance of this effect, velocity curves

for a number of cases were constructed, and Equation (V-3) was used

to find v0. Table V-3 summarizes the results. In this table, MIN,

, l/e refer to the part of the profile used to find the velocity;

N, G, R, B refer to tke unconvolved profile, convolved with a

Gaussian slit 0.041 wide, convolved with a rotation broadening
-l

function corresponding to v sin i = 10 km s , and convolved with

both broadening functions, respectively. The weakest lines were
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completely washed out by the rotation broadening function and these

cases are omitted from the table. The velocity curves determined

from the minima of the strong lines have also been omitted due to

splitting of the line core. It can be seen that v 0 can be found to

an accuracy of better than ± 0.4 km s
-1 by using Equation (V-3).

While this error will introduce a 4%7 error in the radius determination,

it is rare that observations can be made to this accuracy.

Inspection of these velocity curves reveals only small differ-

ences among them. The adopted curve, Figure V-17, represents a

typical velocity curve. The line used is moderately strong, varying

from an equivalent width W = 88 n to W = 153mA. A macroturbulence of

7 km s- 1 has been assumed and the resultant profile was convolved with

a Gaussian slit corresponding to 2 1 / mm. In view of the discussion

earlier in this chapter, the velocity was measured at the half inten-

sity point on the profile. This velocity curve has been adopted as

representative of the observed velocity curves of the metal lines

and will be the only one used in the next chapter.
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Table V-1

-1
Radial velocity in km s observed

from computed profiles

log a -1 -1 -2 -2 -3 -3

a(km s-1) 5 10 5 10 5 10
log 10

-1.000 2.9 5.4 3.3 5.4 2.1 5.4

0.204 5.4 6.6 5.4 9.3 4.2 9.3

1.408 6.7 13.3 6.6 14.7 6.6 14.7

2.612 10.8 14.7 9.3 14.7 6.6 14.7
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Table V-2

Microturbulent velocities in

hydrodynamic model

A log W R v/vSTB  /VSTB A V

.00 .12 1.32 0.97 0.88 1.39 3.6

.05 .10 1.26 0.99 0.77 1.22 1.6

.10 .06 1.15 1.01 0.56 0.89 1.2

.15 .20 1.58 1.02 1.22 1.93 5.8

.20 .16 1.45 1.05 1.03 1.63 4.7

.25 .08 1.20 1.05 0.62 0.98 0.8

.30 .14 1.38 1.05 0.92 1.46 2.1

.35 .14 1.38 1.06 0.92 1.46 2.0

.40 .10 1.26 1.05 0.73 1.16 1.0

.45 .12 1.32 1.04 0.84 1.33 2.4

.50 .18 1.51 1.02 1.12 1.77 3.8

.55 .08 1.20 1.01 0.66 1.04 1.6

.60 .20 1.58 1.01 1.22 1.93 3.7

.65 .08 1.20 0.99 0.67 1.06 1.6

.70 .04 1.10 0.98 0.48 0.76 0.7

.75 .06 1.15 0.97 0.59 0.93 1.0

.80 .08 1.20 0.97 0.69 1.09 1.4

.85 .08 1.20 0.96 0.69 1.09 2.3

.90 .06 1.15 0.96 0.60 0.95 0.4
.95 .08 1.20 0.96 0.69 1.09 2.3



Table V-3

Error in center of mass velocity (km sec )

MIN 1/e_ l/e
log gf N C R B N R B N. C B NR B

-4 0;2 0.4 - - 0.4 0.4 - - 0.2 0.2 - -

-3 0.0 0.3 0.4 0.3 - - 0.4 0.3 - -

-2 0.1 0.1 0.0 0.0 0.1 0.1 0.1 -0.2 0.1 0.0 0.0 0.0

-1 0.4 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.2 - -0.2 -0.2

0 - - - - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

I - - - - 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

'.7
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Figure V-i. Curves of growth for log a = -1. - . - .- u

E = 0(C&o) ; , 1 = 5 km s-1 (C5

-1
o o, - = 5 km s-1 (C 5 );

-1a = 10 km s-  (CalO ) . C is the microturbulent

velocity and a is the velocity gradient parameter.
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Figure V-2. Curves of growth for log a = -2. Notation is the
same as in Figure 1.
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Figure V-3. Curves of growth for log a = -3. Notation is the same
as in Figure 1.
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Figure V-5. Microturbulent velocity, S, vs. a measure of the velocity
gradient, AV. The least squares line is shown.
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LINE OF SIGHT

Figure V-6. Schematic illustrating effect of angle integration on
a line profile in an expanding atmosphere.
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Figure V-7. Intensity profiles of lines in an expanding atmosphere.-"

The curves are labelled with the corresponding value of
S" cos .
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Figure v-8. a) Profile of a weak line in a moving atmosphere without
velocity gradient.. The dashed line is the bisector.

b) Same as (a) for a strong line.
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Figure V-9. Profile of a strong line in an atmosphere with a velocity
gradient. The dashed line is a straight line drawn
vertically from the minimum of the profile. The bisector
of the profile is also shown.
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Figure V-10. Line profile showing a "Cheshire Cat" line.
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Figure V-ii. Same case as Figure V-10 but with all velocities set to

zero.
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Figure V-12. Same case as Figure V-10 but with a constant velocity
in. the atmosphere.
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Figure V-13. Ha profiles computed using the hydrodynamic models.

The profiles have been shiftcd vertically by a, arbitrary
amount.. The phase at which each profile was computed is
shown at the right.
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Figure V-14. Ratio of pulsation to observed radial velocity, p, vs.
ratio of pulsation velocity to half width of line, y.
Dashed line is Parsons' (1972) relation.

a) Weak line measured at minimum of profile
b) Strong line measured at minimum of profile
c) Weak line measured at half intensity point
d) Strong line measured at half intensity point
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Figure V-15. Method for computing velocity characteristic of line core

when core is split. Velocity is measured from intersection

of dashed lines.
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Figure V-17. Adopted velocity curve measured from line profiles
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CHAPTER VI

DETERMINATION OF CEPHEID RADII

A. Radius determination methods.

1. Bolometric radius.

There are two ways to find the radius of a Cepheid from

observed quantities. The first method involves solving

L = 4n R oTf.T (VI-1)
eff*

for the radius. The radius found in this way will be referred to

as the bolometric radius. The mean luminosity of the star is

found from the period-luminosity law while, in the simplest appli-

cation, the temperature is calculated from the color. There are

obvious drawbacks. A change of the zero point of the period-

luminosity law of 0Om1 changes log R by 0.02,about 4%. In addition,

the solution is very sensitive to errors in Teff, which, if broad

band colors are used to define Teff, depends on the assumed reddening.

Whitney (1955) attempted to improve this approach by using model

atmospheres to determine the flux of the star and finding log R*/R

from

S- 2.5 log, f -I + 5 log (R,/Ro) (VI-2)

where S is the sensitivity function of the filter used to find M*.

Oke (1961 a, b) made a further improvement by making absolute flux

measurements in 50 1 bands. He then compared these fluxes to those

computed from model atmospheres to find Teff. While both of these

approaches remove some of the errors inherent in the color-Teff

140
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calibration, they require knowledge of the line blocking. An

error of only 50*K in Teff results in an 0.01 change in log R. In

addition to these systematic errors, the gravity variations, which

can be as large as a factor of 10 (Parsons 1971 a, b; see also

Chapter IV) will produce an error that varies during the pulsation

cycle.

2. Baade and Wesselink radii.

One way to find the radius that avoids these problems is the

Wesselink (1946) method. Based on an idea of Baade (1926), the

method uses both the light and velocity curves to find the radius.

Baade proposed using the change in brightness to give the ratio of

the radii from

M 1 - M2 = 5 log R2 /R1 + 10 log T2/T1 , (VI-3)

and the velocity curve to give

R2 - R = f v dt.

Baade's method requires knowledge of the color temperature law. It

was not surprising when Bottlinger's (1928) attempt to find the

radius of ( Gem failed since he assumed the star radiated like a

black body. Becker (1940) improved the situation by assuming only

that a single valued color-Teff law existed and obtained radii for a

number of Cepheids.

Wesselink (1946) removed the problem of the color-Teff law when

he suggested choosing two phases at which the star has the same

color. If it is assumed that equal color implies equal temperature,

the last term on the right of equation. (VI-3) vanishes, and there is
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no need to know even the form of the color-Teff relation. The

Wesselink method also has the advantage that it is independent of

both the zero point of the period-luminosity law and the interstellar

reddening.

There are two other assumptions inherent in the Wesselink method.

First, the mass depth of the line forming region is assumed constant

with phase so that the observed velocity curve follows a given element

of gas. Second, it is assumed that the ratio of the radii of the line

forming and continuum forming regions is constant with phase. These

assumptions will be examined below.

There are, of course, problems with the method. Accurate velocity

curves are required and any change in p, the ratio of pulsational to

observed radial velocity, produces a systematic error in the radius.

In addition, loops in the (U-B) - (B-V) diagram indicate that equal

color does not necessarily imply equal temperature. It is also known

that the opacity scale changes during the cycle so that different

elements of gas are observed at different phases. Velocity gradients

measured in Cepheid atmospheres by Sanford (1956) and Dawe (1969),

among others, indicate that the ratio of radii of the photosphere

and reversing layer changes during the pulsation cycle but the size

of this change is not known. Fernie and Hube (1967) have also shown

that small errors in reducing the light and velocity curves to the

same epoch produce large errors in the derived radius. In spite of

these difficulties excellent results have been obtained.

B. Calculated radius of the hydrodynamic model.

1. Wesselink radius.

Most papers reporting Cepheid observations include a section
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computing the radius by Wesselink's method. In accordance with this

tradition, the results of the previous chapters can be treated as

observations and the radius of RDT calculated using Wesselink's method.

The light and color curves of Chapter IV and the velocity curve of

Chapter V have been adopted as if they were observations of a star.

As pointed out previously, zoning effects limit the accuracy of the

light and color curves to about 0~02 which translates into an 6%

random error in the radius. The integral of the adopted velocity

curve indicates an error of 0.2 km s-1 in the center of mass velocity

of the star. Combined with a random error of 2% from changes in p,

the minimum error expected is 107, 87. random and 2% systematic. Since

Fernie (1968) was dealing with less accurate velocity data than that

used here, his adopted error of 10% appears to be an underestimate.

Figure VI-1 shows the radius curve derived from the adopted

velocity curve (dashed line) and the radius of 7 = 1 taken directly

from the models (solid line). The amplitude of the radius curve

determined from the lines is about 7% larger than the variation of

the photospheric radius. This error will result in an overestimate

of the radius amplitude but should have only a small effect on the

computed value of the mean-radius. It appears, therefore, that errors

introduced into the mean radius by changes of the opacity scale with

phase and by velocity gradients in the atmosphere are small.

Figure VI-2 shows the results of the Wesselink calculation

performed by taking pairs of points with equal (B-V), (V-R), and

(R-I). The solid line was taken directly from the models. The

error bar shows that the expected error of a single measurement is
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comparable to the total radius variation. Therefore, all that can

be derived from these values is the mean radius. STB has a radius

of 71.7 Ro while the Wesselink calculations give 58.5 ± 4.0, 73.5 d

8.7, and 67.3 ± 5.2 for (B-V), (V-R), and (R-I), respectively,

where the quoted errors are the standard deviations computed from

several radius determinations. The agreement is satisfactory except

for the (B-V) curve which is most sensitive to changes in geff . It

thus appears that the Wesselink method can be used to find the mean

radius of a Cepheid with an accuracy of about 10% only if very high

accuracy observations are available.

2. Baade radius.

At the time Wesselink published his modification of Baade's

method, the color-T relation was not known accurately. Since

then the relation has been calibrated for several different color

systems. In Chapter IV, it was shown that the color-Teff relations

derived for RDT agree with those derived from observations. Figure

VI-3 shows the values of R/RO, where RO is the radius at m = 0,

derived using Baade's method. The notation is the same as in Figure

VI-2. Using Baade's method introduces an additional error. A change

of 0T02 in the color results in an error of 2% in the radius. Baade's

method does not depend on the zero point of the color-Teff law or

that of the reddening law. Only the slopes of these relations enter

the calculations.

The agreement with the model is quite good except near maximum

light (4 = 0.35). The radii derived from (R-I) are more accurate

than those of (B-V) and (V-R), especially near minimum light. Com-

lined with Figure VI-1, mean radii in solar units of 77.2 ± 7.8 from

(B-V), 79.6 ± 4.7 from (V-R), and 73,.6 ± 5.5 from (R-I) are derived.
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If the points near maximum light are removed, these values become

71.0 ± 5.5 (B-V), 74.2 k 3.8 (V-R), and 73.6 ± 2.8 (R-I). Again the

agreement is satisfactory, and there appears to be no need to select

only phases of equal color unless the reddening is not known.

3. Bolometric radius.

One further set of radius determination was made, this time

using Equation VI-1. Temperatures were computed from the color-Teff

relations derived in Chapter IV. The bolometric magnitude of the

sun, MBOL = 4.72, and the solar effective temperature, Teff = 58000 K,

were taken from Allen (1963). In this case an error of 0.01 in the

zero point of the color-Teff relation introduces a systematic error

of 5% into the radius determination. A random error of 8% and a

systematic error of 7% can, therefore, be expected. The mean radius

derived is 69 ± 2 R, regardless of which color was used. The agree-

ment is again satisfactory, and this method can be used for stars

that do not have accurately measured velocity curves. The radius

determinations are summarized in Table VI-1.

C. Method of Wooley and Savage.

Some comments are in order on the modification of the Wesselink

method proposed by Wooley and Savage (1971) and Wooley and Carter

(1973). Their main point is that the color depends on geff as well

as Teff . Thus, it is necessary to include the luminosity of the star

in the calculation, which means both the mass and radius can then be

found. They also use a velocity function instead of the observed

velocities which are often too poorly determined to be useful.

Figure VI-4 compares the adopted velocity curve of RDT (solid line)
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with the velocity function of Wooley and Carter (1973) scaled to a
-1

semi-amplitude of 15 km s-1 (dashed line). There is a reasonably

good agreement between the two curves except near the second bump.

Wooley and Savage make two unnecessary assumptions, however.

First, they make the assumption that A R/R is small enough that

In (I + AR/R) = AR/R. Fernie and Hube (1967) have shown that this

assumption leads to an underestimate of the radius of 5 to 10%. In

particular, the radius of RDT would be underestimated by 11%. Second,

they assume that the accelerations of the atmosphere are always small

compared to g = G M/R2 when in fact they are often much larger than

g (Parsons 1971; see also Chapter IV). These two underestimates are

partially cancelled by using p = 24/17 = 1.41, instead of the smaller

value suggested by Parsons (1972) and in Chapter V.

As shown in this chapter, though, the gravity variations have

only a small effect on the derived mean radius, especially if (R-l)

is used. Even the change of the opacity scale with phase produces

only small errors in the mean radius if sufficiently weak lines are

used to define the velocity curve. With the best observations it

should be possible to achieve an accuracy of 10% with any of the

methods discussed above. In practice, however, the errors may be

closer to 15 or 20% due to additional errors introduced by the lower

accuracy of the observed velocities.



Table VI-1

Radius determinations of hydrodynamic model

in solar units

RST B = 71.7

B-V V-R R-I expected error

Method R s.d. R s.d. R- s.d. random systematic

Wesselink (1946) 58.5 ± 4.0 73.5 ± 8.7 67.3 - 5.2 8% 2%

Baade (1926) 77.2 ± 7.8 79.6 - 4.7 73.6 ± 5.5 10%7 2%

all points
some points* 71.0 ± 5.5 74.2 ± 3.8 73.6 - 2.8 107. 2%

L = 4 TR2 OT4  69.4 ±- 2.0 69.5 ± 2.2 69.2 + 1.6 8% 7%

*excluding points near maximum light
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CHAPTER VII

SUMMARY, CONCLUSIONS, AND FUTURE WORK

A. Summary and Conclusions.

Hydrodynamic models of the atmosphere of a 12d Cepheid have

been computed including the effects of radiative transfer in the

optically thin zones. A new method of including radiative transfer

in a standard Henyey type hydrodynamic code has been developed. The

differences between using the diffusion approximation and the solu-

tion of the transfer equation have been shown to be negligible ex-

cept above T = 10- 2 where temperature inversions occur only in the

radiative transfer case. A study of the envelope of the full

amplitude model indicates that the phase lag between maximum light

and minimum radius increases continuously between the Hell and H

ionization zones. The asymmetry of the light curve appears to origi-

nate in the H ionization region.

The Hertzsprung sequence has been examined and a mechanism

presented to explain the occurrence of two bumps on Cepheid light

curves. The bump occurring on the falling branch of the light

curves of 7d to 10d Cepheids and on the rising branch of 10d to 15d

Cepheids is caused by the Christy mechanism, i.e., a pressure wave

which propagates into the star, reflects from the stellar core, and

appears on the next pulsation cycle. The other bump which appears

on the falling branch 6f 10d to 15d Cepheids is due to an atmospheric

oscillation. This bump occurs when the natural pulsation mode of

the atmosphere, which has a shorter period than the envelope, has a
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large enough amplitude to generate a shock wave by compressing the

hydrogen ionization region. When this shock reaches the surface

it appears as a bump on the falling branch of the light curve. Since

two mechanisms produce bumps on Cepheid light curves, masses derived

from the phase of the bump may be unreliable. While it has been

shown that this mechanism is consistent with the Herzsprung sequence,

more models must be computed to fully study this atmospheric oscilla-

tion mechanism.

The hydrodynamic models were then used to compute UBVRI colors

by treating the model at each time step as a snapshot of the atmo--

spheric structure. A P-V diagram of the atmosphere constructed from

the effective temperature and gravity at each phase indicates the

destabilizing influence of the hydrogen ionization region. These

effective temperatures and gravities were then used to compute line

blocking coefficients which were applied to the monochromatic fluxes

to give the colors of the models, including the effects of spectral

lines. The color curves were smoothed to minimize the zoning effects,

and it was shown that they reproduce the observed variation of light

amplitude and phase of light maximum with effective wavelength. The

color-Teff relations were computed and were shown to agree with

those derived independently. It was then shown that the loops in

the (U-B)-(B-V) diagram are most likely caused by a nonthermal depen-

dence of the continuous opacity. Mean colors of the model were computed

using three averaging schemes, and it was found that the intensity means

of the magnitudes, (B) I - (V)I, best represent the colors of the

equilibrium model. The location of the equilibrium model in the

H-R diagram indicates that the zero point of the Sandage and Tamrann

period-luminosity relation is too high by O0.2.
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Line profiles were then computed using the moving atmospheres

from the hydrodynamic models. It was shown that, although the

velocity gradients in the atmosphere are not responsible for the

observed microturbulence or variation of microturbulence, they

can be used to explain the occurrence of supersonic microturbulence.

The total observed microturbulence was shown to be consistent with

the linear sum of the classical microturbulence and that caused by

the velocity gradients.

The splitting of the cores of strong lines was shown to be due

to shock induced temperature inversions in the Cepheid atmosphere.

This mechanism explains why the splitting is observed only in strong

lines in classical Cepheids and why the splitting in H and Call H

and K is greater than in the strong metal lines. The splitting of

the line core makes velocity measurements from the minimum of the

profile unreliable, but a method for determining the velocity of

the upper atmosphere was presented. The center to limb variations of

the profiles were then studied, and it was shown that the commonly

used ratio of the pulsation to observed radial velocity, p = 24/17,

is too high. It was found that velocities obtained from the lines

undereptimate the velocity gradients present in the model atmospheres.

It was also shown that the integral of the velocity over phase can be

used to find the velocity of the center of mass of the star to the

accuracy of observations in spite of changes in the continuous opacity

scale during the pulsation.

The adopted light, color, and velocity curves were then used

to study various methods for determining the mean radius of a

Cepheid. The Wesselink method was found to give radii accurate to
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about 10% if errors in the observed velocity curves are minimized.

Baade's method also produces accurate radius determinations if the

currently accepted color-Teff relations are used. It was also shown

that the bolometric radius found from L = 4TT R 2 T is reasonably

accurate and can be used for stars for which the velocity curve is not

accurately known. However, the bolometric radius is susceptible to

systematic errors introduced by errors in the reddening, the zero point

and slope of the color-Teff law, and the zero point of the period-

luminosity relation. The Wesselink method is independent of these

systematic errors, and Baade's method is affected only by errors in

the slope of the color-Teff relation. All these errors can be reduced

by using R-I instead of B-V.

B. Future work.

There are several modifications to the models that would improve

the agreement with observations, i.e., nongray radiative transfer, proper

treatment of line blanketing, convective energy transport. The most

important of these changes is the inclusion of convection. While it is

true that convection can carry only a small part of the flux due to the

low densities of Cepheid envelopes, the destablizing influence of the

hydrogen ionization region is sensitive to changes in the temperature

gradient. The atmospheric pulsation modes are also dependent on the

temperature structure of the hydrogen ionization region. Since it takes

a -convective element about 0.1 period to move one pressure scale height, a

theory of time dependent convection is needed,

Some of the assumptions made in calculating the models need to be

investigated. One of the most common of these assumptions is that the
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lower boundary of the model can be kept fixed. Both the velocity

and kinetic energy asymptotically approach zero in deep envelope

models, but, as shown in Figure VII-1, a 3-D plot of momentum vs.

mass point and phase, the momentum does not. The atmosphere has

very little momentum due to the low density, but the momentum is

being arbitrarily forced to zero at the base of the envelope by

the zero velocity boundary condition. While it is not clear that

this constraint is significant, a model should be computed with a

free lower boundary to see if this assumption affects the observables.

Another interesting problem is the inhomogeneity of Cepheids.

Examination of a catalog of light curves indicates that light curves

of Cepheids with nearly the same period show striking differences.

For example,C Gem with a period of 10d15 has a low amplitude, nearly

sinusoidal light curve, while B Dor with a period of 9.84 has a

large amplitude, asymmetric light curve with two distinct bumps. Our

understanding of these differences is limited by the common practice

of computing a model and finding a Cepheid with a similar light curve.

More would be learned about these differences if a grid of models

were computed to fit a single star as is done for stellar atmospheres.

Such a grid could also be used to study the origin of the bumps on

the light curves.

The hydrodynamic model atmospheres can also be improved by

including more optically thin zones extending to smaller optical

depth. Ideally these models should extend to a Rosseland mean

optical depth of 10-6 to allow the strongest lines and the possible

formation of a chromosphere to be studied. This extension of the
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model will probably require that the plane parallel assumption

be dropped.

The line profile calculations can also be improved by including

non-LTE effects, especially if "Cheshire Cat" lines are to be studied.

The ratio of pulsation to radial velocity, p, should be studied

further since its variation with line width and line strength is not

understood. In particular, the variation of p with pulsation velocity

should be included when constructing velocity curves as demonstrated

by Duquesne and Schatzman (1955). Until the variation of p is under-

stood errors in the radii determined by the Wesselink or Baade methods

cannot be reduced much below 10% and the period-radius relation cannot

be used to detect stars pulsating in overtone modes.
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APPENDIX A

COEFFICIENTS OF THE INCREMENTS-DIFFUSION APPROXIMATION

The nonvanishing coefficients of the increments as derived by

G. S. Kutter and W. M. Sparks used in the diffusion approximation cal-

culations are listed. These coefficients are denoted by the symbol DET

followed by two numbers. The first of these refers to the differential

equation (II-1 to 11-5). The second number runs from 0 to 10, where 0

refers to the inhomogeneous term, and 1 to 10 identify the coefficients

of 6vi_-1 6Bi- 1 , 6Ri-1, 6Wi-_21 sZi_1/2', S 6Bi, S6Ri 6Wi+1/2' 6Zi+1/ 2 '

respectively. For instance, the conservation of mass equation (II-1)

has the form

DET13 6Ri_1 + DET14 * 6Wi-1/2 + DET18 *6R = DET10.

i =2:

The coefficients are identical to those listed below for i = 3, ..., N

except for

DET13 = DET32 = 0.

i = 3, *.., N:
3

DET13 = CON1I_/2 r,_ ,

DET14 = V
1-1/2

3
DET18 = -CON1 /2 ri ,

1 3 3
DET10 = -Vi-1/ 2 + CONi 1 /2 (ri r i-

CONIi-1/2 =-4[M(Q - Q1-)] -1;
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/ , n+1/2 2+t -1/2 ( -i-1/2 " - si-1/2 , -+-1/2 • 1/2

8H
DET25 = OY21 P1 -/ 2  wi ,

1 i-1/2 zi
i-1/2

DET26 = 1/Atn+1/2

DET28 = -26 Y2i(P 2  q+12 - n1/2 + --
i +1/2 i+1/2 i-1/2 i2

i

n+1/2
2qi+1/2 Vi+1/2

DET29 = -(1-6) Y2w -

8H n+1/2 2
-eY2 P+/2 + qi+1/2 -I i+1/2 Wi+1/2 Wi+1/2

DET210 = -0Y2 P
i 1+1/2 Zi

i+1/ 2

• ui VDET2Oi i n+1/2 1V+1/2

Atn+1/2 ii+l/2

i+1/2 i-1/2 n+1/2 n/+1/2)]
-q / F + Y2i q~l/ - q1-1/2 n 1 1 1+1/2 i-1/2

1-1/2

2 i-1
Y21 = 4yr i [MoQ(S 1 1 /2  Si-1 / 2 )]

DET32OL (MoQi-1/ (Si s i-1)].
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DET34 = 1 E + - e
,&t"+1/2 I 3W z -1/2 i-1/2n+1/Zi a 2 + (1-0) PAt z

I8V -1/2 [ + - -/ ( +
i-1/2 1-1 1 + i-1/ 2 awZ

-n+1/2
+ 3 q-1/2

DET35 1 aE +p n
DET35 = n+1/2 i-/2 i-1/2i-2 -1/2 a

Wi-1/2 1i-1/2

DET37 = - DET32

DET30 = (1 - 0) G/2.+ G1/2 - 1 E - En

1-1/2 1-1/2 n+1/2 - i-1/2

G 1/ - V -1/2 1-1/2
1-1/2 i-/ 2  i- S 1-1/2 1-1/2 n+/2

2 aw -1/2 i-/2 -1/2
1/2 s - S 1wi--1/2 /2 -1/2n+/2

DET47 = -1

DET48 = 4Y4 (Z+1/2- Z1-1/2 )

Zi-/2

1 ' K I
DET49 = Y4 (Zi 2  -Z) 2)

2 1+/2 1+1/2 i-1/2-- 12/2

DET410 = Y4Z1 2- ZK Z

2 i .1i+22 -i-i/2"L "lw +il /2
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DET40 = Bi  -Y ()

442 rT256 a 2  i i
i 3L Mo Qi.(Si+ 1/2 - S1/2  ki

DET56 = -6/ri  ,

1 %
n+1/2 r

DE50finition of= -Y2+1 given below.- ) -+

above for i = 1, ... , N as are DET24, DET25, and DET26 except for the de-

finition of Y2N+1 given below.

DET28 = 2 Y2N+l N+/2 o N+1/2 Vi+/2r J

DET29 = DET210 = 0

DET20 - N+1 N+1 + (1 - 0) - Yn n+l/2 i+1/2
DAtn+/2 2)N+ N+ N+/2

n+1/2

+ e FN+1 - Y2N+1 qN+ 1/2

2N+1 = 4s rN+1 [Mo (QN+1 QN+1/2 ) -

P -P No N+1/2 a

a = (N-1/2 - mN+12)/(N-3/2- N-1/2 ) ;

DET44 = -Y4 YYY4
N+1 N+l- aw/2

1Nsl/2
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DET45 = -Y4 (YYY4 - 4)
N+l N+1 a

I+1/2

DET47 = -1

DET48 = 2Y4+ 1  3 YYY4 1 + 1)

DET49 = DET410 ='0

DET40 = Bl+ 1  Y4N+1

2 4
16ra N+ N+I/2

N+1 3L, YY4+ + 2/3

Mo ( "K+1/2

Y41 N+1 - QN+1/2 2(r 3  r 1/ 2

2 (r M. rN )

YYY4 - = YY4 +23
N+1 YY4N+1 + 2/3



APPENDIX B

COEFFICIENTS OF THE INCREMENTS--

RADIATIVE TRANSFER

The coefficients of the increments that are changed to include radiative

transfer effects are listed. The notation is defined in Appendix A.

i = 2, ... , N:

DET40 = Bi - BRi

DET44 = Fli(DET44)D

DET45 -- Fli(DET45)D

DET48 = 0 ,

DET49 = F2i(DET49)
D

DET410 F F2i(DET410)
D

B = 167 2 r eff I d

r i  if i 10 ,
ref f

r if Ti < 10 ,

ra = radius of deepest zone with t < 10

1 if rTi  10 ,
Fl =

1-e - A i  if Ti < 10

1 if Ti f 10
F2 l-e A T i+l if ri < 10

ti (  - Ti+2
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DET40 = BNL-1 B

DET44 = F2Nl(DET44)D

DET45 = F2N+l(DET45)D

DET48 = 0

_TN
F2+ 1  1- e

A subscript D denotes the quantity was computed using the formula in

Appendix A.



APPENDIX C

ELECTRON PRESSURE ITERATION PROCEDURE

The electron pressure P is important for determining the emergente

spectrum since it affects the ionization balance through the Saha equation.

P , though, also depends on the number of free electrons, P = N kT.
e e e

Thereforej an iterative procedure must be used to find P from the knowne

temperature and density. The iteration used here can be written as

p(k) 1 2
e [/P ( k - l)] 1

where k counts the number of iterations,

(0) 1 1 PkTP P
e 2 N 2 Im

N
a = PN YiYi/X 

i=l

N 2 2
a2 = P Yi(Yi - XiZi.)/Xi

Yi = number fraction of element i

4

X. = + f.. ,
i j=1 1J

4
Y. I jf..

. = mfj=1_ Nn+l

n=l Ni,n

Convergence of this -iteration is quadratic and global.
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Plate II. Velocity vs. mass poinr aid phase. Bright areas indicate
expansion; dark areas contraction. b ase of the envelope
is at the top; surface at the bottom. Two periods are shown.
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